Archimedean Polyhedra
And the Boundary:
The Missing Link

“Geometry is one and eternal, a reflection
from the mind of God. That mankind shares
in it is because man is an image of God.”

—Johannes Kepler!

develop, through a sometimes good-natured analysis
situs of the Platonic and Archimedean polyhedra, an
examination of the limits that constrain physical space. My
contention is that the boundary demonstrated by the con-
struction of the Platonic solids can not be fully apprehended
without involving the Archimedean polyhedra in the investi-

Keeping in mind the above invocation, we are going to
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There’s more to the
structure of space than
meets the eye, as you’ll
see in this geometry
adventure, which takes
you to the limits of the
universe.

A view of Saturn’s rings. The
study of the Platonic and
Archimedean solids reveals
that space has a structure,
and that structure exposes a
discoverable intention,
which has created a
boundary.

NASA/JPL

gation. This discourse is not meant to substitute for your work-
ing through the discoveries of Carl Gauss or Bernhard
Riemann, but is meant to fill a conspicuous gap in existing
pedagogy. The Archimedean polyhedra are largely, and for
quite sensible reasons, an unexplored area of study, and on
that basis, my subtitle is emblazoned above, for all to see, as
“The Missing Link.”

By the time we are done, we will have constructed the geo-
metrical equivalent of an imaginary toolchest which will then
be available for your use in later efforts. This chest has an array
of tools, arranged in two different drawers. One set of tools is
realized on the surfaces of three spheres and comes from a
place somewhere "above” the spheres. The other set is ren-



Figure 1
KEPLER’S PLANETARY
ORDERING

Johannes Kepler (1571-1630), who
discovered the principle of gravita-
tion during his studies of the move-
ments of the planets in the Solar
System, saw a coherence in the har-
monious ordering of the planets in
their orbits, and the harmonious
ordering of the nested Platonic solids.

This is an engraving of Kepler’s
determination of the orbits of the
planets, from his Mysterium
Cosmographicum. His ordering,
beginning from the circumsphere
defining the orbit of Mercury, are:
octahedron, icosahedron, dodeca-
hedron (of which the insphere is
Earth and the circumsphere is Mars),
tetrahedron, and cube.

dered in two dimensions, even though it was developed from
a three-dimensional lattice. | haven’t invented any of these
tools. Some of them have been known for decades, others for
millennia, but the sets have never been assembled in this fash-
ion before; nor, to my knowledge, has the insistence been pre-
sented that these tools, as sets, be used in the workshop of
your mind.

Why Archimedean Polyhedra?

Study of the Platonic solids reveals that space is not just an
endless checkerboard; it has a structure, and the structure
exposes a discoverable intention, which has created a bound-
ary.

There are five, and only five shapes that are convex polyhe-
dra with regular, congruent faces whose edge-angles and ver-
tices are equal: the Platonic solids (Figure 3). You can only
make these five shapes within those constraints, and hence the
limit. When you try to make more regular solids, say, by put-
ting 6 triangles, or 4 squares together at a vertex, you don’t get
a solid at all; you can’t do it, no matter how hard you try. The
fact that your grand project of regular-polyhedron manufacture
is brought to an abrupt halt after only five successes, says that
there is more to the universe than meets the eye. Something in
the make-up of everything you can see is different from what
you see. That is the importance of the Platonic solids. They
prove that we don’t know what we are looking at.

The uniqueness of the Platonic solids proves that we are not
living on a checkerboard at all; we are living in a goldfish
bowl. The limits are real. Admittedly, most people spend their
time looking at the rocks and bubbles in their bowl, or they
choose to play checkers on the nonexistent checkerboard, and
wonder how long it will be until feeding time.

1 wanted to know what the shape of the fishbowl is. Just how
do the Platonic solids relate to the limit? How does it work?
Does the visible universe push through the infinite like a ship

through the ocean, and are the regular polyhedra the wake? Is
the discrete manifold bashing against the continuous manifold
like a subatomic particle in a cyclotron, and are the Platonic
solids the little pieces spinning off in a bubble tank? Or is it
like graphite dust on a kettle drum head, when sounding dif-
ferent notes causes the dust to dance in different standing-
wave patterns? What is it? What's going on?

For about 10 years | watched the Platonic solids, hoping
they would show me something about the structure of the uni-
verse. | put cubes inside dodecahedra, tetrahedra inside

Figure 2
KEPLER’S ARCHIMEDEAN SOLIDS
Kepler did extensive studies of polyhedra, and made
these drawings of the Archimedeans, which was part of
his geometry tool chest.
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Figure 3
THE FIVE PLATONIC SOLIDS
The Platonic solids are convex polyhedra with regular, congru-
ent faces whose edge-angles and vertices are equal. These are
the only Platonic solid figures that can be constructed, hence the
limit: cube, octahedron, tetrahedron, dodecahedron, and icosa-
hedron. The cube and octahedron are dual-pairs, as are the
dodecahedron and the icosahedron. Dual-pairs have switched
numbers of faces and vertices, with identical numbers of edges.

have anything to do with them. Compared to the nice,
5 Platonics, there were 13 Archimedeans, which is
bad enough. Plus there was an infinite series of
Archimedean prisms and another infinite series of
Archimedean anti-prisms. And on top of that they all
have duals, the Archimedeans, the prisms, and anti-
prisms; and they are not duals of each other like the
good old Platonic solids are, either. Each of the 13
Archimedean shapes has a unique dual that isn’t an
Archimedean solid, and all the prisms and anti-prisms
have unique duals, too. Infinity times 4 plus 13
Archimedeans twice was too much. Archimedeans
weren't for me. The 5 Platonics did their job; | could
handle that just fine.

Spheres Were My Downfall

You can arrange each Platonic solid so that its ver-
tices can touch the inside of one sphere. When you do
that, it is said to be inscribed in the sphere. The center
of each face of a Platonic can also touch another
sphere. So can the center points of their edges. A dif-
ferent sphere can touch each location on each poly-
hedron. This comes from the regularity of the Platonic
solids. Spheres are important because they represent
least action in space. Just like a circle on a plane,
spheres enclose the most area with the least surface.

Spheres represent the cause of the limit you run into
when you try to make more than five Platonic solids.

Just like the guy in Flatland,2 who saw only a circle

cubes, octahedra inside tetrahedra; | paired duals, stellated
those that would stellate, and sliced cubes and tetrahedra to
see what their insides looked like. None of these “interroga-
tion protocols” worked; they still wouldn't talk.

! knew about the Archimedean solids and didn’t want to

when a sphere popped into his world, the sphere is the

highest level of least action we can apprehend with our sens-

es alone. Perhaps the vertices of a Platonic solid don't define

a sphere, but the sphere (or the nature of space that makes the

sphere unique) is what limits the Platonics. That’s more likely.

Spheres are what the limit looks like to us if we're paying
attention.

12 edges 30 edges

Figure 4
THE PLATONIC DUALS
Note that the tetrahedron is the dual of itself.

That's an important part of studying
geometry. How does the infinite impact
the universe we can see? Where does the
complex domain intersect our domain?
It's hard to see. The guy in Flatland
looked at a circle and saw a line seg-
ment; never mind the sphere that creat-
ed the circle that looked like a line to
him. We aren’t in much better shape
than he was, when we are looking at
spheres. Spheres, without the proper
shading, just look like circles to us.

6 edges

Spherical Geography

A straight line on a sphere is a great
circle, like the equator of the Earth. Look
at a globe; we are talking about geome-
try (Geo = Earth, metry = measure),
right? Great circles are why Charles
Lindbergh flew over Ireland to get to
Paris. There are no parallel straight lines
on a sphere. Any two great circles inter-
sect each other, not once, but twice, at
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exactly opposite sides of the sphere.

You can do a neat trick with least action
on a sphere. | saw this first in a videotape
of a class given by Larry Hecht (editor-in-
chief of 21st Century magazine), and later
Lyndon LaRouche featured the process in
his paper “On the Subject of Metaphor” in
Fidelio magazine.’

If you divide a great circle on a sphere
with another great circle, they divide each
other in half, as stated above. Picture the
equator and what we laughingly call the
Greenwich Meridian on Earth. Of course
the two great circles don’t have to be at
right angles to each other; either of them
can rotate around the points where they
meet (in this case in the Gulf of Guinea,
off Ghana, and in the Pacific Ocean,
where the equator and International Date
Line meet—Figure 8).

If you want to see how great circles
divide each other in even divisions other
than just in half, then the fun begins.

Take our original two great circles. Go
to where they meet, off Africa, and move
west on the equator until you hit the
Galapagos Islands and stop. You are ready
to create a third great circle. Turn right and
go north. You zip over Guatemala, then
over Minnesota, the North Pole, where
you intersect the second great circle,
Siberia, China, Indian Ocean, equator
again, Antarctica, the South Pole is anoth-
er intersection, South Pacific, and you are
back where you started, having intersect-
ed the equator twice and the International
Dateline/Greenwich great circle twice,
too.

Now what do you have? The equator is
divided into 4 equal parts by the other 2
great circles. So is the International Date
Line great circle, and so is our new great

The Archimedean solids

The Archimedean duals

Figure 5

THE 13 ARCHIMEDEAN SOLIDS AND THEIR DUALS
All hell breaks loose. The polyhedral neighborhood becomes very crowded.
There are 13 Archimedean polyhedra, and they all have duals.

circle. Three great circles dividing each

other into 4 equal parts. The sphere of the Earth was just divid-
ed into 8 equilateral, right triangles by our 3 great circles
(Figure 9). The great circles intersect at 6 locations. | wonder
how many different ways you can divide great circles evenly
with other great circles?

We got 4 even divisions with 3 great circles, how about 3
even divisions? Well, if you take the equator, or, | hope by now
a 12-inch-diameter embroidery hoop, and divide it by other
great circles into 3 parts, you don’t get 3 parts. You get 6 parts,
because pairs of great circles meet at opposite points of the
sphere. There are no odd-numbered divisions of a great circle
by other great circles. Let’s see what these 4 great circles do.
First, make sure the 3 great circles dividing your original one
are also evenly divided into 6 segments by each other, and see
what we have: All 4 circles are divided into 6 equal parts—
spherical equilateral triangles alternating with spherical

squares above and below the original circle, and triangles sur-
rounding each pole.

Six squares and 8 triangles; does that sound familiar?

Anyway, we are about to hit a limit here, just to warn you.
The only other way for great circles to evenly divide them-
selves on a sphere is with 6 of them dividing each other into
10 even segments. Try dividing one great circle into 5 equal
parts—you can’t do it; it will make 10 divisions, just like 3
forced 6. This is very hard to see if you haven’t done it your-
self—so, do it yourself. You can get a pair of 12-inch-diameter
embroidery hoops for about a dollar. What you end up with is
really pretty, too. It is a metaphor you can hold in your hand.

Twelve spherical pentagons and 20 spherical triangles. That
sounds familiar too.

Three hoops, 4 hoops, and 6 hoops; and no other combina-
tion will evenly divide great circles—another limit, just like the
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Anti-prisms

Figure 6
PRISMS AND ANTIPRISMS
There are infinite series of the prisms and the anti-
prisms, and they all have duals too.

Platonic solids are limited in number. (See Figure 9.)

But, this is the killer: Look at the 4-hoop construction. See
the 12 places the hoops intersect each other? There are 6
around the middle, 3 on top and 3 on the bottom.

WEell, if you stacked up identical marbles, you could put 6
marbles around one marble on a flat surface. Make sure that
each of those 6 marbles have 6 around them, too. Keep doing
this over and over, and cover your whole floor with a neatly
arranged layer of marbles; then get ready for the second level.
In the second layer, you could put 3 marbles around any one
marble in the first layer, either in the 12, 4, and 8 o’clock posi-
tions, or alternately, in the 2, 6, and 10 o’clock positions.
Choose one of the two arrangements and add enough marbles,
and you will complete the second level, which will look just
like the first level.

When it comes time to do the third level, you have a deci-
sion to make. You can put the third level in one of two orien-
tations. You can put them directly over the marbles in the first
level, or you can take the path less travelled: Put the marbles
over the position you didn’t select for the second

NASA

Figure 7
OUR EARTHLY SPHERE
The sphere represents least action in “three dimensions.”
A great circle is a straight line in spherical geometry.

triangles. The dual of the cuboctahedron is called the rhombic
dodecahedron. Dodecahedron means that it has 12 faces, like
the regular Platonic dodecahedron; and rhombic means the
faces are rhombic in shape, that is, diamond-shaped rather
than the pentagonal shape you are used to. The rhombic
dodecahedron is the shape of the honeycomb that Kepler dis-
cusses in the “The Six-Cornered Snowflake” paper.* Rhombic
dodecahedra fill space. That means you can stack them up
with no air between them. Because spheres close-pack in a
way that generates the vertices of cuboctahedra, the dual of

level. If you do this, and keep the pattern up until
you fill your room entirely with marbles, you will
have two things, besides a heck-of-a-lot of mar-
bles. One is a room filled with the most marbles
that could possibly be put into the room, no mat-
ter what other method you used to stack them up:
They are “close-packed.” The other thing is this:
Look at any marble. Where does it touch the other
marbles? It touches 6 around the middle, 3 on top
and 3 on the bottom—just like the intersections of
the 4 hoops! The even divisions of 4 great circles
generate the very same singularities where the
hoops intersect, that close-packing of spheres
does where the spheres touch. (See Figure 10.)
Remember that | didn’t want to construct the
Archimedean solids? Here’s how it happened.
The spherical faces of the 4-hoop construction
represent an Archimedean solid called the cuboc-
tahedron: “Cube-octahedron” is 6 squares and 8

Figure 8
GREAT CIRCLES INTERSECTING

Great circles intersecting each other on a sphere always divide each
other in half. That is about as “least action” as you can get.
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Octahedron Cuboctahedron Icosidodecahedron

Figure 9
GREAT CIRCLES AND SPHERICAL POLYGONS
There are only three ways great circles can divide themselves into even
sections which result in spherical polygons.The 3, 4, and 6 great-circle
hoops represent the spheres which contain the great-circle figures below
them: octahedron, cuboctahedron, and icosidodecahedron.

Parmenides go through the whole thing.
Parmenides didn’t want to, and said, “. . . and
so | seem to myself to fear, remembering how
great a sea of words | must whirl about in.””
Yes, | was caught.

What Most People Think
Archimedean Solids Are
Here are the 13 different Archimedean
shapes: Two of them, we are told, are more
regular than the others, and are called “quasi-
regular.” You have already run into them;
they are the cuboctahedron and the icosido-
decahedron, which are defined by the 4- and
6-great-circle constructions. The cuboctahe-
dron has the 6 square faces of the cube and
the 8 triangular faces of the octahedron. The
icosidodecahedron has 12 pentagonal faces
like the dodecahedron and 20 triangular
faces like the icosahedron. (See Figure 12.)
The next five of the Archimedeans are not
a big problem to visualize either; I call them
the truncated Platonic group (Figure 13).
There is one of them for each Platonic solid,

the cuboctahedron, by definition, can fill space. Now this and they include the only polyhedron that people regularly kill
wouldn’t be so earthshaking, except for this fact: There is only  and die for to this day, the truncated icosahedron, which is in
one other polyhedron in the entire universe that has all of its  the shape of a soccer ball.8

faces identically shaped, and can fill space

the way the rhombic dodecahedron does;
that is the cube. Just those two with that
limit—the cube and rhombic dodecahe-
dron—and nothing else fills space.’

When Larry Hecht pointed this out on the
videotape | saw, my heart sank. | knew that
I was trapped; | had to construct the
Archimedean solids,® because the dual of
one of the Archimedeans had expressed a
relationship to the same kind of limit that the
Platonic solids express. This is the same limit
that the great circles represent when evenly
dividing themselves. It was all one package.

I was cornered. | felt like that old bastard
Parmenides, who was trapped by the
young Socrates into laboriously defending
his life’s work, rather than playing mind

games with a group of bright young people. CLOSEST PACKING IN SPHERES

Socrates had accused Parmenides’ hench-

Christine Craig

Figure 10

man, Zeno, of lying to

advance Parmenides’
theories. Zeno and
Parmenides responded
not by losing their tem-
per, but by trying to
recruit Socrates to their
way of thinking (the best
defense is a good
offense, even back then),
but Socrates maneu- Rhombic dodecahedron Cube
vered Zeno into having

Figure 11
SPACE-FILLING POLYHEDRA
A Platonic solid, the cube, and the dual of
an Archimedean, the rhombic dodecahe-
dron, are the only two space-filling poly-
hedra with identical faces. The rhombic
dodecahedron is the shape of the honey-
comb cells made by bees. Can you see the
hexagons implicit in the figure?
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Cuboctahedron Icosidodecahedron
Figure 12
QUASI-REGULAR POLYHEDRA
The quasi-regular polyhedra are the great-circle figures
containing the dual Platonic solids reflected in their
names.

In each case you can imagine starting with a Platonic solid.
For each Platonic face, however, there is a face with twice the
number of sides. For example, the truncated cube has 6 octag-
onal faces instead of the 6 square faces of a cube. Where the
Platonic solid had a vertex, there is now a face, which looks
like the faces of the dual of the original Platonic solid. The
truncated cube has 8 triangular faces, located where the
cube’s vertices were, situated in the same axis as the octahe-
dron’s faces. This works for the others, too. The truncated octa-
hedron has 8 hexagonal faces and 6 square ones. The truncat-
ed tetrahedron has 4 hexagonal faces from the 4 triangles of
the tetrahedron. The tetrahedron’s dual is the same shape as
itself, so you have 4 triangles in the truncated tetrahedron, too.
The truncated dodecahedron has 12 ten-sided faces and 20 tri-
angles, while the truncated icosahedron has 20 hexagons and
12 pentagons.

Truncated tetrahedron Truncated cube Truncated

octahedron
Truncated Truncated
dodecahedron icosahedron
Figure 13

TRUNCATED PLATONIC GROUP
These are the Archimedean polyhedra which appear to
result from truncation transformations on the corre-
sponding Platonic solids.

That wasn’t too bad. We are done with 7 out of 13 already.

It does get stranger from here on out, though. In ascending
order of weirdness, you next have a pair of solids, which I call
truncated quasi (quasi, for short) because they are truncated
versions of the quasi-regular Archimedean solids. These are
the truncated cuboctahedron and the truncated icosidodeca-
hedron (Figure 14). Where the cuboctahedron has squares and
triangles, the truncated cuboctahedron has octagons and
hexagons. In addition, where the cuboctahedron has 12 ver-
tices, the truncated cuboctahedron has 12 square faces.
Where the icosidodecahedron has pentagons and triangles,
the truncated icosidodecahedron has 10-sided faces and hexa-

Figure 14
TRUNCATED QUASI-
REGULAR SOLIDS
The great-circle figures (the
quasi-regular polyhedra) can
also be truncated, giving the
truncated cuboctahedron and
the truncated icosidodecahe-

Truncated Truncated
dron. cuboctahedron icosidodecahedron
Figure 15 Snub cube Snub dodecahedron

RHOMBIC QUASI- Figure 16

REGULAR SOLIDS SNUB LEFT- AND
Transformations can also be RIGHT-HANDED
made on the great-circle (quasi- There are two sets of snub polyhe-
regular) Archimedean polyhe- dra in the standard Archimedean
dra, leading to the rhombic arrangement: the left- and right-
great-circle figures, the rhombi- Rhombi- Rhombi- handed snub cubes, and the left-
cuboctahedron and the rhombi- cuboctahedron icosidodecahedron and right-handed snub dodecahe-
cosidodecahedron. dra.
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gons, with the addition of 30 square
faces where the icosidodecahedron
vertices were (Figure 14).

The next pair, the rhombicubocta-
hedron and the rhombicosidodeca-
hedron, are simpler, but one of them
is harder to see. These are called
rhombi-quasi polyhedra, and they
have the same square faces from the
vertices of the quasi-regular solids as
the previous pair does, but the other
faces are the same shape as those of
the quasi-regular solids, themselves,
not double the number, like in the
quasi, above. The rhombicosidodec-
ahedron has 12 pentagons, 20 trian-
gles and 30 squares for faces, and
looks kind of obviously what it is, but
the rhombicuboctahedron has 18
square and 8 triangular faces (Figure

(a) Cube/octahedron family

Truncated cube  Truncated  Cuboctahedron Rhombi- Truncated Snub cube
octahedron cuboctahedron cuboctahedron
(b) Dodecahedron/icosahedron family
Truncated Truncated Icosi- Rhombicosi- Truncated Snub
dodecahedron icosahedron dodecahedron dodecahedron icosidodecahedron dodecahedron
Figure 17

STANDARD ARCHIMEDEAN ARRANGEMENT
Two families of polyhedra are related to the

15). This confused me when | first
saw it, because the squares, even
though they looked alike, actually

Platonics: the cube/octahedron family, and the
dodecahedron/icosahedron family. The truncated
tetrahedron sits alone in the tetrahedron family.

(c) Tetrahedron family
Truncated tetrahedron, all by itself

came from two different processes
(the square faces of the cube, and
squares from the vertices of the cuboctahedron). This is the
kind of ambiguity that can drive you nuts, until you realize that
the whole point of what you are doing, in the geometry biz, is
finding this kind of puzzle, and solving it.

Speaking of ambiguity that can drive you nuts, the last two
Archimedeans are the snub cube and the snub dodecahedron.
The snub cube, mercifully has 6 square faces. So far so good,
but it also has 30 triangular faces. The snub dodecahedron has
the expected 12 pentagonal faces, and 80 triangular faces. If
you think that’s bad, I'll tell you that there really are two dif-
ferent snub cubes and two different snub dodecahedra. They
are made up of the same parts, but the way they are put
together makes them look like they are twisted to either the left
or the right (Figure 16).

That's it; those are the 13 Archimedean shapes.

The way these shapes are
traditionally organized is
apparent from their names.
There are three sets arranged
by dual-pair type: the tetra-
hedron, the cube/octahe-
dron, and the dodecahe-
dron/icosahedron. One set
contains only the truncated
tetrahedron. The next one
contains the truncated cube

Figure 18

and truncated octahedron,
the cuboctahedron, the
rhombicuboctahedron, the
snub cube, and the truncat-
ed cuboctahedron. Finally,
you have a set containing
the truncated dodecahedron
and truncated icosahedron,

THE TRUNCATED CUBE

The truncated cube has 6
octagonal faces where the
cube had 6 square faces,
and 8 triangular faces
where the cube had 8
three-face vertices.

the icosidodecahedron, the rhombicosidodecahedron, the
snub dodecahedron, and the truncated icosidodecahedron.

Now, | tried a more clever approach, asking why the tetra-
hedron group was such a little, nubby family, while the other
Platonic solids have such nice big families?

What Archimedean Polyhedra?
Act 1, scene 1 of King Lear:

REGAN: Sir, | am made

Of the self-same metal that my sister is,
And prize me at her worth. In my true heart
I find she names my very deed of love;
Only she comes too short. . . .°?

Figure 19
FROM THE TRUNCATED CUBE TO
THE TRUNCATED CUBOCTAHEDRON
The truncated cuboctahedron retains the 6 octago-
nal faces from the truncated cube, but 8 hexagonal
faces replace the 8 triangular faces. Additionally, 12
squares appear where the cube’s edges were.
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is to As is to

Figure 20
ANOTHER TRANSFORMATION TO PRODUCE ?

The truncated tetrahedron (upper right) has 4 hexagonal
faces in place of the tetrahedron’s triangular faces, and
4 triangular faces where the tetrahedron had vertices.
Transform it analogously to the transformation of the
truncated cube to the truncated cuboctahedron. Retain
the 4 hexagonal faces from the truncated tetrahedron,
and add 4 more hexagonal faces to replace its triangu-
lar faces, then add 6 squares, one for each tetrahedron’s
edge. What do you get?

After | saw Larry Hecht's class, | did make all the
Archimedean solids. It took weeks, and | highly recommend
that readers do the same. You can look at a still picture of
them, or nowadays even download an interactive file from the
internet, but it isn’t the same as planning how many of each
face you need, constructing the faces, and trying to fit them
together so that it looks like it is supposed to. Anyway, in mak-
ing the Archimedean solids, | became more and more upset at
the injustice being meted out to our little friend, the tetrahe-
dron. Not only did he have to pretend he had a dual by acting

is to As is to

Figure 21
A TRUNCATED TETRITETRAHEDRON
Eight hexagons, 6 squares! A truncated tetritetrahe-
dron—a new role for the Archimedean solid also
known as the truncated octahedron.

the part himself, but where the other Platonic dual-pairs have
6 or 7 Archimedean solids associated with them (if you count
left- and right-handed snubs separately you get 7 each), the
tetrahedron had only one Archimedean to play with.
| decided that this injustice would not stand. But what could
I do about it? One thing | knew, | wasn’t going to mess with
the dodecahedron family—80 triangles in a snub dodecahe-
dron? So, the cube family it is. The truncated cuboctahedron
looked busy enough to get my teeth into, and the truncated
cube looked to me like what was happening on it was clear
enough, so that’s where | started. | set up this puzzle: What
would you get if you did to the truncated tetrahedron the same
thing that was done to a truncated cube to get a truncated
cuboctahedron? You know, A is to B as Cis to X. What could
be easier? (Figures18-21.)
The truncated cube has 6 octagonal faces, and so does the
truncated cuboctahedron. The truncated

Tetrahedron family

Cube/octahedron family

Dodecahedron/icosahedron family

Figure 22

The tetrahedron family now has two members.

AN ADDITION TO THE ARCHIMEDEAN SOLIDS

cuboctahedron has 8 hexagonal faces
where the truncated cube has 8 trian-
gles. So far so good. And the truncated
cuboctahedron has 12 square faces,
where the cube has 12 edges. That is the
A is to B part. Now for the “C is to X"
part: The truncated tetrahedron has 4
hexagonal faces, so X has 4 hexagonal
faces, too. Four triangular faces become
4 other hexagonal faces, and the 6 edges
of a tetrahedron become 6 square faces
in X. What is it? What do we have? Four
plus 4 hexagonal faces are 8 hexagonal
faces and 6 square faces. Eight hexago-
nal faces and 6 square faces; it has to
work.

It does! Eureka! A new polyhedron
lives! The tetrahedron has another fami-
ly member. It's alive! I've invented a new
Archimedean solid: 8 hexagons and 6
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square faces, and it has all
of its fingers and toes. It
looks just like. . ..

Wiait a Minute

What does it look just
like? We have already done
8 hexagons and 6 squares,
and if it is an Archimedean
solid with regular faces, and
all, then they both have to
be the same shape: the trun-
cated octahedron.

Yes, look at it, the truncat-
ed octahedron, 8 hexagons
and 6 squares, is sitting in
the tetrahedron family, act-
ing like a truncated quasi, a
truncated tetritetrahedron.
The cube family is intersect-
ing with the tetrahedron
family. The shape of the
truncated octahedron is act-
ing like a truncated tetrite-
trahedron, just like F# on
the piano is also G-flat.
They are “enharmonic

Another view of the Archimedean families.

Figure 23
THE SHAPE OF SPACE

shapes.”

When | first discovered this, | was so happy, | almost forgot
entirely my mission of grilling the Platonic solids for their
secrets. | made an attractive, nicely colored poster with the
pretentious name, “The Shape of Space,” which had the
Platonic and Archimedean solids arranged in the symmetrical
cube/octahedron and dodecahedron/icosahedron families,
centered on the quasi-regular polyhedra; and the truncated
tetritetrahedron was connected to the cube family with little
dotted lines. It was pretty, and took some time to make, but
completely ignored the fact that the tetrahe-

alous.” What | meant to say was, “lIs the Composer of the uni-
verse a spaz?” Who would design something that odd?

What bothered me was the apparent unevenness of the pat-
tern in my shape-of-space chart. It was that tetrahedron fami-
ly that was out of place. | finally decided to look in that direc-
tion.

| knew that while the cube was the dual of the octahedron,
and the dodecahedron was the dual of the icosahedron, the
tetrahedron was the dual of itself. Well, in order to examine

dron still had a long way to go to achieve the
equal rights it deserves as a fully vested
Archimedean solid and head of a family.

At that point, LaRouche put out his
“Metaphor” paper, in which he hit the great-
circle question really hard. The “Metaphor”
paper set me to thinking again. | had sup-
posed that the sphere had to be a major way-
point on the route to the creation of the
Platonic solids; and the quasi-regular solids
(the cuboctahedron and icosidodecahedron)
were clearly generated by even divisions of
great circles on a sphere; and LaRouche
made no bones about the fact that the way to
construct the Platonic solids was with great
circles on spheres. But why, then, was the
epitome of clean, least action resulting in an
oddball hodgepodge of two Archimedean
solids and one Platonic solid? (Figures 24.)

This was really messy. When 1 first wrote
about this 10 years ago | said, “"How anom-

The epitome of clean, least action—even divisions of great circles on a
sphere—results in the oddball hodgepodge of two Archimedean solids
and one Platonic solid.

Figure 24
EVEN DIVISIONS OF GREAT CIRCLES
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Figure 25
+ THE GREAT CIRCLE FIGURES AND DUAL PAIRS
Two of the polyhedra formed by great circles have faces reflecting
the dual pairs of Platonic solids. The 12 pentagonal faces of the
dodecahedron and the 20 triangular faces of the icosahedron cre-
ate an icosidodecahedron. The 6 square faces of the cube and the
+ 8 triangular faces of the octahedron create a cuboctahedron.
Because the tetrahedron is the dual of itself, you could say that
there is a dual-pair of tetrahedra, too. You take the four triangular
faces of one tetrahedron and the four triangular faces of the other
tetrahedron and create—a tetritetrahedron, also known as an
+ octahedron.

Figure 26
THE RHOMBIC TRANSFORMATIONS

In the cube/octahedron family, the rhombi-

cuboctahedron can be formed by taking the

cuboctahedron and adding squares in place
Rhombicosidodecahedron of all its vertices. In the dodecahedron/icosa-

hedron family, the rhombicosidodecahedron

can be formed by taking the icosidodecahe-

dron and adding squares in place of all its

vertices.

Similarly, in the tetrahedron family you
would start with the octahedron (or as we
would call it in this family, the tetritetrahedron)
and add squares to the vertices. T hat gives us the

Rhombitetritetrahedron cuboctahedron again, known as the rhombi-
tetritetrahedron in this enharmonic incarnation.

Left and right snub dodecahedron Left and right snub cube Left and right “snub tetrahedron”

Figure 27
THE SNUB TRANSFORMATIONS

To make a snub cube, surround the square faces of a cube with an alternating lattice of triangles, with one triangle for
each edge of each of the cube’s faces, and one triangle for each face of the cube’s dual, the octahedron.

To transform the great-circle (quasi-regular) icosidodecahedron to its snub, add 60 more triangles to the 12 pentagonal
faces of the dodecahedron and the 20 triangles of the icosahedron—2 triangles for each of the icosidodecahedron edges.

And for a snub tetrahedron, take 4 triangles for the tetrahedron’s faces, 4 triangles for the other tetrahedron’s faces, and
12 triangles. That’s 20 triangles, 2 for each of the tetritetrahedron (octahedron) edges—Ileft- and right-handed, of course.
Yet another enharmonic solid is revealed—the icosahedron—known in this relationship as the snub tetrahedron.
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Faces Edges
8 12 18 Triakis tetrahedron Truncated tetrahedron 12 8 18
(both of them)
14 12 24 Rhombic dodecahedron Cuboctahedron 12 14 24
14 24 36 Tetrakis hexahedron Truncated octahedron 24 14 36
14 24 36 Triakis octahedron Truncated cube 24 14 36
26 24 48 Deltoidalicositetrahedron Rhombicuboctahedron 24 26 48
38 24 60 _ Pentagonal Snub cube 24 38 60
icositetrahedron
32 30 60 Rhombic triacontahedron Icosidodecahedron 30 32 60
26 48 72 Disdyakis dodecahedron Truncated cuboctahedron 48 26 72
32 60 90 Pentakis dodecahedron Truncated icosahedron 60 32 90
32 60 90 Triakis icosahedron Truncated dodecahedron 60 32 90
62 60 120 Deltoidal hexecontahedron Rhombicosidodecahedron 60 62 120
92 60 150 Pentagonal Snub dodecahedron 60 92 150
hexecontahedron
. s Truncated
62 120 180 Disdyakis triacontahedron icosidodecahedron 120 62 180
Figure 28
THE ARCHIMEDEANS AND THEIR DUALS

these anomalies, | decided to see if the tetrahedron family
could be made to conform to the pattern created by the other
two families.

If the tetrahedron is the dual of itself, then the truncated
tetrahedron should show up in the pattern twice also. That
makes sense.

The quasi-regular slot in the other families could be thought
of as forming thus: Take the 6 square faces of the cube and the
8 triangular faces of the octahedron, and create a cuboctahe-
dron. Take the 12 pentagonal faces of the dodecahedron and
the 20 triangular faces of the icosahedron and create an icosi-
dodecahedron (Figure 25). So, in the tetrahedron family you
take the 4 triangular faces of the tetrahedron and the 4 trian-
gular faces of the other tetrahedron and create. . . . The quasi-
regular polyhedron in my hypothesized tetrahedron family
was the octahedron, the very same figure that | had construct-
ed for that slot using LaRouche’s great-circle method earlier.
That was amazing, even electrifying.

In an instant | went from a perception of a cluttered universe
and a nice tidy theory, to a more orderly universe and a pet
theory blown to smithereens.

Now | was sure | could fill up the empty spaces in the

tetrahedron family. | only had two left to do. The rhom-
bicuboctahedron looks like it is formed by taking the cuboc-
tahedron and adding squares where the edges were (Figure
26). The rhombicosidodecahedron looks like you take the
icosidodecahedron and add squares where its edges were. In
the tetrahedron family you would start with the octahedron
(or as we would now call it in this family, the tetritetrahe-
dron) and add squares to the edges. What do you get? The
result was a figure with 8 triangles and 6 squares—a cuboc-
tahedron—a polyhedron already created, which we could
now call the rhombitetritetrahedron, in this new, enharmon-
ic incarnation.

This was getting interesting. | now had three polyhedra
from the cuboctahedron family serving double-duty in the
tetritetrahedron family, and there was one figure left: the
“snub tetrahedron,” if there were such a thing. Snubs (the
snub cube and the snub dodecahedron) weren’t on my
“favorites” list. They were messy; they didn’t have the same
number of faces that the rest of their families did. The snub
cube had 6 squares, all right, but had 32 triangles! The snub
dodecahedron had the expected 12 pentagons, but 80 trian-
gles, as already mentioned, and it wasn't clear what they all
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Figure 29
THE POLYHEDRAL FAMILY RELATIONSHIPS
This is one way of looking at the family relationships
within any of the polyhedral families.

were doing or why. This was about the last time that an
anomaly like that irritated me. | started to look forward to
them after | did the work represented by the next para-
graphs.

To make a snub cube, you surround the square faces of a
cube with an alternating lattice of triangles. You have one tri-
angle for each edge of each of the cube’s faces, and one tri-
angle for each face of the cube’s dual, the octahedron. Six
square faces and 6 times 4 sides is 24 triangles, plus 8 octa-
hedral triangles makes the 32 triangles (Figure 27).

Likewise, in the snub dodecahedron you surround the pen-
tagons in the same manner. Now, to create the supposed snub
tetrahedron you would surround 4 triangles with the same pat-
tern of alternating triangles. That is, 4 faces with 3 edges each,
which would give you 12 triangles; add 4 triangles from the
tetrahedron and 4 triangles from its dual. That would give you
a figure made up of 12 plus 4 plus 4: 20 triangles. Do we have
something like that already? Yes, of course we have 20; it's
called the icosahedron! The icosahedron is also a snub tetra-
hedron, and the icosahedron is from the dodecahedron fami-
ly, too, notthe cube family. The dodecahedron family is enhar-
monically participating in the tetrahedron family, as well! All
of a sudden, the snubs didn’t seem so bad after all. They had
filled up the tetrahedron family. The pattern was complete.

We now have three totally symmetrical families of polyhe-
dra. Each family has the same number of members as the other
two families, performing the same function in each family.
Starting with even divisions of great circles on a sphere, with
the 3, 4, and 6 hoops; each family has a polyhedron directly
mapped from the vertices of the hoops. Every family also has
two Platonics, duals of each other, whose faces are contained
in the previous figure. They have a truncated version of each
Platonic, a rhombic version of the great-circle figure, a trun-
cated version of the great-circle figure, and a snub figure, left-
and right-handed. The families are connected by three poly-
hedra in the cuboctahedron family and one member of the
icosidodecahedron family, appearing in the tetrahedron fami-
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ly as “enharmonic” solids.

This was a milestone, but | wasn’t done. One huge batch of
work | foresaw was, how do you arrange the families so that
both their symmetry and their interconnections are clear? That
would be an updated and more accurate version of my old
“Shape of Space” poster.

The other issue that came up some time later, as a surprise,
was that each of the Archimedeans has a dual. How do they
fit into the pattern?

Another big issue was this: Clearly, the Composer of the uni-
verse didn’t hack off the vertices of a cube with a knife to
make a truncated cube. How directly do great circles partici-
pate in the construction of the Archimedeans, or Platonics for
that matter?

Where Archimedean Polyhedra Meet

We began with the assumption that space wasn’t just an end-
less checkerboard. In investigating the limits of visible space,
starting with the Platonic solids as symbolic of shapes that were
formed by the confines built into the nature of creation, we
fashioned a set of three, symmetrically ordered families of poly-
hedra, each containing Platonic and Archimedean solids.

The families are connected by three polyhedra shared by
both the cuboctahedron and the tetrahedron families as enhar-
monic shapes. These are polyhedra that look alike, but whose
genesis and usage in this scheme, make them different. There
is also one member of the icosidodecahedron family that is
enharmonically shared with the tetrahedron family as well. No
member of the cube or dodecahedron family touches each
other, but both of those families touch the tetrahedron family.

The significance of this arrangement goes back to the age-old
appreciation of the uniqueness of the Platonic solids. The limit
built into the universe is manifested in the fact that you can
construct only five shapes that conform to the restrictions that
define the Platonic solids. That same limit restricts the number
of ways that the great circles divide each other evenly. There
are only three ways to do it. Once you recognize the way the
families intersect, you realize that you are looking at three sym-
metrical families, which contain three pairs of Platonic solids,
generated by three sets of great-circle figures.'®

After | remanufactured all the Platonic and Archimedean
solids with the faces of each solid instructively colored, | want-
ed to develop a pedagogy that would enable people to see
both the symmetry of the families and how they intersected.
My set of all these polyhedra had the cube, and all faces of
other polyhedra that shared the cube’s orientation and func-
tion, colored green. The octahedra and its kin were yellow.
One tetrahedron was red, with its dual orange. The dodeca-
hedron and its co-functionaries were dark blue, and the icosa-
hedron was light blue. The faces which represented variations
on the vertices of the great-circle polyhedra, were colored
white, black, or gray, depending on how many sides the faces
of their Archimedean duals have. This arrangement showed
the symmetry of the families brilliantly, but left the intersec-
tions of the families up to the imagination.

My first attempt to rectify this shortcoming looked like a
model of a molecule—a rather alarming molecule, at that
(Figure 29). A ring of 6 spheres represented the members of
each family. These spheres represented the Platonic solids,
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Figure 30
THE COMPLETE SET OF ARCHIMEDEANS
This is one way of looking at the family relationships within any of the polyhedral families.

Rhombi-
Quasi

Snub
Platonic

Truncated
Quasi

both truncated Platonic solids, the truncated great circle, and
the rhombic great-circle figure, all arranged around the great-
circle figure itself. There was a tail attached at one Platonic,
representing the snub figures. | later refined this arrangement
to one that looked like one of a set of jacks: 6 balls, one above,
one below, up, down, left, and right of the central ball, with
one hanging off to the side.

I actually made three of these sets out of Styrofoam balls and
toothpicks, and attached them to each other in the appropri-
ate manner. If you did it just right, you could join the three
families where they intersect, indicating the connections made
by the enharmonic solids, with the octahedron touching the
tetritetrahedron, the cuboctahedron touching the rhom-
bitetritetrahedron, the truncated octahedron touching the trun-
cated tetritetrahedron, and finally the icosahedron touching
the snub tetrahedron.

I did it, but it was a mess. It was very hard to keep the con-
struction from falling apart. And even when it held together
(though it accurately represented what | wanted to show), you
couldn’t really see it. It had a decided Rube Goldberg quality.

This wasn’t what | wanted at all. You had the sheer beauty
of great circles on a sphere: Least-action pathways on a least-
action surface, dividing themselves evenly and creating sym-
metrical families of polyhedra, which intersected in an ironi-

cal way, typifying the kind of certainty you can only find
embedded in a metaphor, which, of course, is the only way
to speak the truth. This truth represented a visible image of
the unseen limits placed on physical space by the creating
force of the universe. | didn’t think a pile of crumbling
Styrofoam was the right way to show this. | was stuck at this
point for some days. Then | had an idea; | decided to display
this irony ironically.

The irony was this: The unseen, uncreated domain, which
bounds and is creating our universe, has limited our ability to
create regular polyhedra and, as stated, proved that the uni-
verse is not shaped like an endless checkerboard. How to
show this? Put it on a checkerboard.

Do What?

This really cheered me up. In discussing these polyhedra you
have three attributes to contemplate, their faces, the edges
where two faces meet, and the vertices where the edges and
faces meet. For example, the tetrahedron has 4 faces, 4 vertices
and 6 edges; the cube, 6 faces, 8 vertices and 12 edges. The rea-
son the octahedron is the dual of the cube is that the octahedron
has 8 faces where the cube has 8 vertices, 6 vertices where the
cube has 6 faces, and 12 edges, which cross the cube’s 12 edges
at right angles. You get the idea. To map the polyhedral families,
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Figure 31
TWO-DIMENSIONAL GRID OF PLATONIC AND
ARCHIMEDEAN POLYHEDRA

find the location for each member on a three-dimensional grid,
where each axis of the grid represents one of the attributes of the
polyhedron: faces, edges, and vertices.

Since | was working with graph paper on a clipboard, |
started by using only two axes at a time. | found it most effec-
tive to examine the faces and vertices on the two-dimension-
al graph paper and just ignore the edge-axis. (There is anoth-
er irony here that took me years to understand, but no short-
cuts). What | found at the time was really something. (See
Figure 31)

| put the dots on the graph paper. It looked like a confusing
mess, but when | connected each family’s dots with colored
ink, its clarity almost jumped off the paper. It looked like a star
chart with constellations drawn on it. The constellation of
each family looked like a primitive cave painting of a bird—a
crane or pelican-—or better yet, a theropod'' dinosaur, one
that looks like the Tyrannosaurus rex. The Platonics were
located at the tip of each dinosaur’s mouth; the great-circle
figures were the heads and the truncated Platonics were the lit-
tle front claws. The rhombic great circles were the bodies, the
snubs the tips of the tails, and the truncated great-circle figures
were the feet.

I had a “little” 8-foot-long, red Deinonychus dinosaur,'?
with its mouth closed representing the tetrahedron family; a
medium-sized 16-foot, green Ceratosaurus'® with its mouth
open a little as the cube family, and a huge blue 40-foot-long
T-Rex** with its mouth open wide, as the representative of the
dodecahedron family. This was a lot of fun.

One thing that seemed funny to me was that the “truncat-
ed Platonic” pairs---the truncated cube and truncated octahe-
dron, for example—both mapped to the same place, even
though they had very different appearances. The same thing
happened with the truncated dodecahedron and truncated
icosahedron. Look at the truncated cube and truncated octa-
hedron, or even more striking, the truncated dodecahedron
and truncated icosahedron. They don't look at all alike, but
each pair happens to have the same number of faces, vertices,
and edges. Well, one polyhedron for each dinosaur claw.
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Figure 32
THE TETRAHEDRON FAMILY HIGHLIGHTED
The connected dots represent the tetrahedron family,
masquerading as a small Deinonychus dinosaur.

You could see each family clearly on the chart, and the
intersections, too: the tip of the mouth of the green
Ceratosaurus touched the head of the red Deinonychus; the
head of the Ceratosaurus touched the body of the
Deinonychus; and the neck of the Ceratosaurus touched the
foot of the Deinonychus. At the same time, the mouth of the
blue T-Rex touched the tip of the tail of the poor little
Deinonychus. This really worked nicely, and it gave you the
impression that you weren't looking at a static thing. Those
dinosaurs were going to start chewing any minute. You could
also see how the enharmonic polyhedra were, in fact, in both
families, filling different roles.

The dinosaur mouths were open different amounts. That
made me stop and look. It seemed to mess up the symmetry of
the families. | knew something was funny with the way | was
thinking about this, and | had a glimmer of anticipation, like
the change in the way the air feels before a thunderstorm. Why
weren’t my supposedly symmetrical families absolutely identi-
cal on the chart?

| had an idea—superimpose the families to see if they real-
ly were the same shape. They looked the same, but, you never
know. Here’s how it works: The vertices of the dodecahedral
Archimedeans were at 30, 60, and 120; the cubic
Archimedean vertices were at 12, 24, and 48; and the tetrahe-
dral vertices were at 6, 12, and 24. All | had to do was put the
dots on one grid that had three different scales. If the families
were symmetrical, then the dots would be in the same place.
The differences in dodecahedral Archimedean vertices were
30 and 60; the differences for the cubes were 12 and 24, with
the tetrahedrons at 6 and 12. That should work.

The scale for the faces of the Archimedean polyhedra was
the same idea. The dodecahedral Archimedean faces fell at
32,62, and 92. The cubes were 14, 26, and 38; with the tetra-
hedrons at 8, 14, and 20. This worked too, with differences of
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Figure 33
THE CUBE FAMILY HIGHLIGHTED
The cube family resembles a mid-sized Ceratosaurus
when its dots are connected.

Faces

Vertices

Figure 34
THE DODECAHEDRON FAMILY HIGHLIGHTED
The dodecahedron family as a huge T-rex.

30 for the dodecahedral, 12 for the cubic, and 6 for the tetra-
hedral. The Archimedean solids of each family exactly
mapped onto the Archimedeans of all the other families. The
Archimedean polyhedra families really were symmetrical.

Ore little nagging, hint of a question. The cube, dodecahe-
dron, and tetrahedron all mapped onto each other too, when |
overlaid the families of Archimedeans, but the octahedron and
icosahedron each fell in a different place. That was why the
mouths of the dinosaurs seemed to be open wider, as they got
bigger. The bigger the dinosaur, the wider the mouth—maybe
that had something to do with Darwin, but | doubted it. It was a
puzzle, but by this time | was working so fast that | didn’t stop.

This was a situation | was used to by now, in the geometry
work. | had a nice theory, a beautiful picture to show, and one
fly in the ointment. | found that you don’t have to ruthlessly
hunt down the anomalies and destroy them. Believe me, if you
do the work, they’ll find you. (What you do have to do is enjoy
being caught by the anomalies, unlike the “Bread Scholars”
that Schiller denounces, who try to cover up anomalies.'®)

Why weren't my symmetrical families symmetrical? Those
damn dinosaurs had their mouths open different widths. | will
tell you why, but we are going to have to go around the long
way to get there.

Three Dimensions, If You Got ‘Em

| did feel a little bad to be working with only two dimen-
sions of my three-dimensional grid at one time. So, | got a
slab of Styrofoam and some small wooden dowel-rods. |
made a face- and vertex-grid on a piece of paper, cut the
dowels to the length of the edge-axis on the same scale plus
an inch, put the paper on the Styrofoam, and poked the dow-
els through the paper at the proper place an inch into the
Styrofoam. The upper ends of the dowels represented the
location in 3-D where the polyhedra should be located. | was

so happy with this that | made a piece of cardboard which
had pictures of each Platonic and Archimedean polyhedron
on it. The cardboard would sit on the Styrofoam, next to
where the dowels were, so you could see what each dowel
represented.

I had hoped that looking at the pattern in three dimensions
would directly portray some neat secret about the unseen
force that shapes the Platonic and Archimedean solids. Maybe
it would be a 3-D spiral, or waveform, or some exotic shape
like a pseudosphere.

It didn't.

It looked to me like all the polyhedra fell in one plane, a
plane tilted with respect to the other axes, but just a plane!
Upon reflection, this shouldn’t have been a surprise, if | had
had more mathematical training. The phenomenon was an
artifact of what has been sadly named Euler’s formula. Each of
the polyhedra is subject to this curious fact: The number of
faces, plus the number of vertices, minus the number of edges
is always 2.

Tetrahedron: 4 + 4 — 6 = 2.

Snub dodecahedron: 92 + 60 — 150 = 2, and so on.

This would explain why all the solids, mapped the way |
was doing it, ended up in a plane. It did make it easier to
show. | could still accurately display the real three-dimension-
al graph on a two-dimensional piece of paper after all, but it
lacked the pizzazz of having the more trendy hyperbolic
waveforms in my graph.

‘The Universe, and All That Surrounds It’16
In LaRouche’s “Metaphor” paper, which was published when
he was in prison, at the height of my activity in these matters, he
made it quite clear that great circles on a sphere were the way
to create the Platonic solids. My one overriding thought while
working on this project was, “Spheres are primary; how does
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Figure 35
GOD’S GRAPH PAPER

ed within to enhance visibility.

The 6-, 9-, and 15-great-circle spheres, with the fundamental 3-, 4-, and 6-great
circles of the Platonics superimposed on them. These are made of half-inch strips
of colored poster board glued into the great circles. White balloons were inflat-

cuts through the center of the next
face, cuts a different edge in half at
right angles, cuts through the center
of another face and then joins up
with the edge on the opposite side of
the dodecahedron. It continues on
until it returns to the original great-
circle segment. If you can see it (it is
really hard), you will find that it takes
1 great circle to cover 2 edges of the
dodecahedron. Since there are 30
edges on a dodecahedron, it takes
15 great circles to define a dodeca-
hedron.

Fifteen great circles! | can barely
see 4 great circles when I'm looking
right at them. How can | visualize
152

Remember the Bread Scholars?
You have to do it. For safety’s sake,
don’t use 15 embroidery hoops for
this. Use a half-inch strip cut the long
way from a piece of poster board.
Mark the strips where they will inter-
sect before you cut them out. There is
a lot of technique involved in getting
them to work, but that’s part of the
fun, too.

Remember the dodecahedron
inside the icosidodecasphere? The
center of each of the dodecahedral
edges touches a vertex of the icosi-
dodecasphere. There are 30 edges
to a dodecahedron, and 30 vertices

Christine Craig

this come from a sphere?” A sphere is the highest level of least
action we can apprehend with our senses alone.

The regular 6-hoop sphere, the icosidodecasphere, has 12
pentagonal and 20 triangular areas that the great circles
sweep out. To locate a dodecahedron in this arrangement,
you put each of its 20 vertices in the center of one of the 20
spherical triangles of the icosidodecasphere. Likewise, the
icosahedron’s 12 vertices would go into the 12 spherical pen-
tagons of the icosidodecasphere. If you look at a dodecahe-
dron alone, you see that it is like every other polyhedron we
are dealing with, except the tetrahedron, in this way: It is
made up of features that reappear on opposite sides of the fig-
ure. Each face has a parallel face that is on the other side of
the dodecahedron, so a dodecahedron is really made up of 6
pairs of parallel faces. Likewise, the vertices all have another
vertex exactly opposite to it on the other side of the dodeca-
hedron. The edges do too. Look at the 30 edges of the dodec-
ahedron. If we imagine the dodecahedron inside a sphere that
touches each of its vertices and imagine a segment of a great
circle connecting each vertex to form a dodecasphere, then
we are ready for action.

Take any edge on the spherical dodecahedron, the dodeca-
sphere. This is a segment of a great circle. Extend the segment
in a straight line on the sphere. The line (great-circle path)

70 Summer 2005 21st CENTURY

in an icosidodecahedron, and they
are, indeed, in the same orientation. Because that’s true,
look at where the 15 great circles go. They all bisect the
vertices of the icosidodecasphere, clean as a whistle.

Look at an icosahedron inside an icosidodecasphere.
Remember that? 12 vertices are inside 12 spherical pentagons.
The center point of the each of the icosahedral edges touches
each icosidodecasphere at the vertex—30 and 30, its just like
the dodecahedron. The 30 edges of an icosidodecahedron
would make 15 great circles, just like the dodecahedron did.
In fact they are the very same 15 great circles.

Now look at this process backwards. You start with a sphere—
least action in the visible domain. Straight lines on the sphere,
great circles, intersect each other to give you even divisions. This
can be done in only three ways, with 3, 4, and 6 great circles.
Take the 6-great-circle sphere, the icosidodecasphere, and bisect
each angle where the 6 great circles meet at each vertex with
another great circle. These 15 great circles have created the ver-
tices of both the dodecahedron and the icosahedron. You have
done it: least action, to spheres, to Platonic solids.

Now, you could slice up a dodecahedron to make the other
Platonic solids without using the other regular great-circle fig-
ures, but why use 18th Century methods, as FDR said to
Churchill?'? Use the even divisions of great circles directly.'®

OK, who's next? The cube and octahedron in the 4-hoop



cuboctasphere are next. This is a little easier. The cube fits into
the cuboctasphere with its 8 vertices in the centers of the 8
spherical triangles. The centers of its 12 edges hit the vertices
of the cuboctasphere, and if you extend its 12 edges, you get
6 great circles. This is the same pattern as before, but with
fewer components.

The octahedron is a different kettle of fish. It fits into the
cuboctasphere all right: the 6 vertices in the center of the 6
spherical squares of the cuboctasphere, with the center points
of the 12 edges at the vertices of the cuboctasphere. But you
don't have to extend the edges to make complete great circles.
They already are complete great circles, because the octahe-
dron, in spherical form, is also the tetritetrasphere, the three-
great-circle figure of the tetrahedron family. In the icosidodeca-
sphere, you had 15 additional great circles, each shared by the
icosahedron and the dodecahedron. In the cuboctasphere, you
have 6 great circles used by the cube, and another 3 by the
octahedron, for a total of 9. Nonetheless, the cube and octahe-
dron are generated by the 4 great circles of the cuboctasphere
with exactly the same method that created the dodecahedron
and icosahedron.

For the tetritetrasphere, we almost get back to normal. If you
put a tetrahedron in a tetritetrasphere, its 4 vertices go into
alternating spherical triangles, and the centers of its edges map
to the vertices of the tetritetrasphere. Extend the edges of the
tetrahedron and you get 6 great circles. The other tetrahedron
fits into the unused spherical triangles of the tetritetrasphere,
and its edges lie in the same 6 great circles as the first tetrahe-
dron’s do.

This is the least-action pattern. 6 regularly divided great circles
generate 15 others, which define the dodecahedron and icosa-
hedron. Four regularly divided great circles generate 9 others,
which define the cube and octahedron; and 3 regularly divided
great circles generate 6 others, which define both tetrahedra.
That's the pattern. The irony here is that the 6 other great circles
that define the cube are the same 6 great circles that define both
tetrahedra, but they in no way resemble the regularly divided
arrangement of 6 great circles that are the icosidodecasphere.
The cube/tetrahedral sharing of the same irregular set of 6 great
circles, is why you can put two tetrahedra in a cube, as in the
Moon/Hecht model of the nucleus of the atom.?

In the middle of all these lovely trees, | remembered some-
thing about a forest. The reason that | started investigating
Archimedean solids in the first place was because the rhombic
dodecahedron filled space like a cube; and no other shape in
the universe, which had only a single kind of face, did that. It
was as obvious as the nose on my face, that the rhombic
dodecahedron isn’t an Archimedean solid at all. It doesn't
have regular faces. It is the dual of an Archimedean.

What About the Duals?

So, | constructed the Archimedean duals, too, all of them.20
(See Figure 28.)

The way Archimedean dual polyhedra relate to the
Archimedeans is instructive. The sphere that encloses and
touches each vertex of an Archimedean solid touches the cen-
ter of each face of the dual. All of the faces of a dual are the
same shape, although some of them can be flipped over in a
left-handed/right-handed way; and none of their faces is regu-

Tetrakis hexahedron
(6 circles)

Disdyakis dodecahedron
(9 circles)

Disdyakis triacontahedron
(15 circles)
Figure 36
THE ARCHIMEDEAN DUALS AND
THE GREAT CIRCLES
The dual of each and every Archimedean solid is direct-
ly mapped by the 15, 9, and 6 great circles derived from
the 6, 4, and 3 evenly divided great circles—except for
the pesky snubs.

lar. As we will see, the Archimedean duals are harder to dis-
cuss, because of the irregularity of the faces, but I've come to
believe that they are, at the very least, as important as, and as
primary as, the Archimedean solids themselves.

The last dual solid | made, the disdyakis triacontahedron, was
the dual of the truncated icosidodecahedron. It has 120 identi-
cal little right triangles for faces. As | was putting it together (I
actually cut out 120 triangles and taped them together), | real-
ized that the edges of this polyhedron were also great circles.
That seemed interesting, but this was such a busy construction,
that | couldn’t see exactly what | had made at the time. (This
realization also points out the importance of actually construct-
ing the real polyhedra, rather than just looking at them.)?!

| thought about the great-circle question for days. | had my
whole set of 48 polyhedra hanging in my bedroom. There
were a heck-of-a-lot of great circles dividing up the disdyakis
triacontahedron into 120 triangles. Were there 15 great circles
in the disdyakis triacontahedron? Were they the same 15 great
circles that define the dodecahedron and the icosahedron?
Could that be possible? Was the universe designed with such
precision and charm that the process that created the dodeca-
hedron and the icosahedron directly mapped to the dual of the
truncated icosidodecahedron? It seemed like it should be, but
was almost too much to hope for.

| went to sleep one Saturday night thinking that, if the families
of polyhedra were indeed symmetrical, and the disdyakis tria-
contahedron was really mapped this way, then the edges of the
dual of the truncated cuboctahedron, the disdyakis dodecahe-
dron, should be made out of the 9 great circles used to make the
cube and octahedron. In addition, the edges of the dual of the
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Faces

Vertices

Figure 37
TWO-DIMENSIONAL GRID OF
PLATONIC AND ARCHIMEDEAN POLYHEDRA
AND THEIR DUALS

enharmonic truncated tetritetrahedron, the tetrakis hexahedron
(which looks like a truncated octahedron), should map to the 6
great circles that make the two tetrahedra. When my eyes
opened on Sunday morning, | was looking right at the tetrakis
hexahedron. | saw the 6 great circles in the figure as plain as day.

This really got me moving.

It turns out that the dual of each and every Archimedean solid
is directly mapped by the 15, 9, and 6 great circles derived from
the 6, 4, and 3 evenly divided great circles; all of the duals except
for the pesky snub cube and snub dodecahedron, are right there.
The snubs are a special case, which will become more apparent,
the more work we do. The duals of the truncated quasis use all
of the faces defined by the great circles. The duals of the others
combine some of the faces to make up rhombic and differently
shaped triangular faces. It is worth the trouble of constructing the
Archimedean duals just to see how this works.

The realization of the role of the great circles in the con-
struction of the Archimedean duals made me determined to
integrate the Archimedean duals into my system. How do the
duals map onto the grid on which | had already placed the
Archimedean solids?

These names mean something about the number of faces.

The dual of the truncated tetrahedron, the triakis tetrahedron,
looks like a tetrahedron that has each face divided into three
faces. There are three identical triangles in each original face of
the tetrahedron. Their edges go from the center of its face to the
vertex, and are pushed out a little at the center of the tetrahedron’s
face. | suppose the “triakis” means 3 and “tetrahedron” means,
as we know, 4-sided. The first pair of these polyhedra | made
were out of black poster paper, as their faces were triangles.??
The other names are also as instructive, but not very catchy.

What you see when you add the Archimedean duals to the
map, is a symmetrical pattern, like a Rorschach ink-blot test
made up of dots.?3 (See Figure 37.)
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As | started to do the additional mapping, | decided to go whole
hog. You may remember that there are two infinite series of
Archimedean solids that we have ignored so far, the prisms and
anti-prisms. A prism can be constructed by taking any regular
polygon from an equilateral triangle up to an equilateral bazillion-
sided figure. Hang squares with edges the same length as those of
your original polygon on that polygon, so each edge of the square
touches an edge of the polygon and the two adjacent squares.
Then put a polygon just like your original one on the bottom, and
you have an Archimedean prism. (See Figure 38.)

For example, you can start with a regular hexagon, hang
squares from each of its edges, and put another hexagon on
the bottom. It looks like a hatbox. This is an Archimedean
solid too. One sphere would touch each vertex, and one
sphere would touch the center-points of both hexagons, and
one sphere would touch the center-points of all squares. This
is true for all of the Archimedean prisms. As you get into the
higher numbers of sides, the prisms get thinner and thinner,
eventually resembling a coin, or CD. As for the duals, the
prism duals are all made up of isosceles triangles. The dual of
the 6-sided prism, the hexagonal dipyramid, would have 12
triangles—6 isosceles triangles pointing up, like a tee-pee, and
6 pointing down. See: “dipyramid,” two pyramids stuck
together at their bases. As you add more edges, the triangles
get longer and longer until they take on the aspect of a
stretched-out dowel with sharpened ends, until you finally
give up because there are too many sides.

Anti-prisms are similar to prisms, but are made with tri-
angles rather than squares, hanging from any regular poly-
gon—from an equilateral triangle on up. There are as many tri-
angles as there are edges on both the top and bottom polygon.
The triangles are put together alternately, so that they look like
a child’s drawing of shark’s teeth. A 6-sided anti-prism has 12
equilateral triangles around the circumference, and hexagons
on both top and bottom. The dual of an anti-prism is made up
of a 4-sided figure that looks like an arrowhead. They are
called trapezohedrons. The more sides the anti-prism has, the
more pointy the arrowhead. The dual of the 6-sided anti-prism
has 12 faces: 6 arrowheads pointing up, meeting at their
points, and 6 pointing down.

There is a pattern here: the faces of the prisms are always two
more than the number of polygonal edges, the vertices are always
twice the number, and the edges are three times the number.

Figure 38 (b) shows the progression of the anti-prisms. The
pattern here is: The faces of the anti-prisms are always two more
than twice the number of the polygonal edges, the vertices are
always twice, and the edges are four times the number.

To chart the duals of the prisms, switch the face and vertex
numbers, just as with every other polyhedron.

There is something going on that | haven’t mentioned yet:
The 4-prism is the cube and the 3-anti-prism is the octahe-
dron. Look at all the work the dual-pair of the cube and octa-
hedron do. First, they each are Platonic solids and duals of
each other. Second, the octahedron is also the tetritetrahedron,
the figure directly created by the even divisions of three great
circles, and parent of the tetrahedron family; and the cube is
its dual, perhaps called the rhombic hexahedron in that incar-
nation. Third, the cube is the 4-prism, one of that infinite
series; and the octahedron is its dual, a dipyramid—the one



(a) Prisms
¥ Triangular: 5 faces, 6 vertices

Square: 6 faces, 8 vertices (a cube)

Pentagonal: 7 faces, 10 vertices

Hexagonal: 8 faces, 12 vertices

Seven sided: 9 faces, 14 vertices

Octagonal: 10 faces, 16 vertices

Nine-sided: 11 faces, 18 vertices. . . .

(b) Anti-prisms
Triangular: 8 faces, 6 vertices (an octahedron!)

Square: 10 faces, 8 vertices (a cube)

Pentagonal: 12 faces, 10 vertices
Hexagonal: 14 faces, 12 vertices

Seven sided: 16 faces, 14 vertices

Octagonal: 18 faces, 16 vertices

Nine-sided: 20 faces, 18 vertices. . . .

Figure 38
PRISMS AND ANTIPRISMS
The series of prisms and antiprisms goes on infinitely.

Hexagonal prism Hexagonal anti-prism

Hexagonal dipyramid Hexagonal trapezohedron
Figure 39
MORE PRISMS
Pictured here are a 6-sided prism, anti-prism,
and their respective duals.

with equilateral triangular faces. Fourth, the octahe-
dron is the three-anti-prism, the first of that infinite
series; and the cube is its dual, a trapezohedron with
equilateral faces.

Let’s go to the grid. (See Figures 37-38.)

The Chart
There is quite a lot going on here, so I'll try to
break it down. The dominant thing you see after you

Figure 40
CHARTING THE PRISMS AND
THEIR DUALS

When the faces and vertices are gridded,
the prisms and their duals go off in two
different straight lines that seem to start
at the tetrahedron. At the second prism
dual-pair—the 4-prism (cube)—the anti-
prisms and their duals start, with the 3-
anti-prism (octahedron), which is also
the dual of the 4-prism. The entire chart
is contained in three pairs of straight
lines. The prism and dual-of-prism
lines—the ”3-lines”—meet at the tetra-
hedron; the anti-prism and dual-of-anti-
prism lines—the 4-lines”—run parallel,
and very close to the “dual line,” while
the “5-lines” connect all three snubs
and their duals, and meet the “3-lines”
at the dodecahedron and icosahedron
(the snub tetrahedron).
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put all the dots on the graph paper, is the wedge that the
prisms and their duals make. Since you are mapping dual-
pairs, the chart is completely symmetrical. There is an imagi-
nary line down the center of the pattern where you could put
a mirror, and see the place where the dual of every mapped
point on your side would appear in the mirror. The only
mapped point that actually falls on this line is that of the tetra-
hedron, as it is the dual of itself. You could also call this line
the pyramid line, as any pyramid you can construct would fall
on this line. Pyramids are all duals of themselves. A pyramid
with a million-sided base would have a million-and-one faces,
and a million-and-one vertices, with 2 million edges. The
tetrahedron is the simplest pyramid we have, with a base of 3
sides, and is the only pyramid that is a regular polyhedron.
Since every pyramid is the dual of itself—and even though the
tetrahedron is the only pyramid qualified to be mapped on our
chart—they all would map right down the center dual line, if
we bothered. You could fold the chart in half on the dual line,
or pyramid line, and every other polyhedron would touch its
dual.

The prisms and their duals go off in two different straight lines
that seem to start at the tetrahedron. At the second prism dual-
pair, the 4-prism (cube), the anti-prisms and their duals start with
the 3-anti-prism (octahedron), which is also the dual of the 4-
prism. They run in parallel lines very close to the pyramid line.

This intersection spot, where the cube and octahedron are,
is the location of the most intersections of functions on this
chart. Does that have something to do with the ease with
which we conceptualize a cube? Cubes are easy to picture:
Up, down; front, back; left, right.

The whole chart represents the boundary layer between our
perceived universe, and the unseen process of creation. In dis-
secting this wonder, we find the snubs, and the dodecahedron
family as a whole, on the far side of the singularity from us—
the “dark side of the Moon,” if you will. The cube, in contrast,
is the nearest and most familiar point in this process. (Can sin-
gularities have sides?)

All of the Archimedean duals which have 3-sided faces
occupy the same spot on the graph as a dual of an
Archimedean prism, even though they are not the same shape
(except the octahedron, which is the dual of a prism—the
cube). All of the Archimedean polyhedra which pair with
those duals fall on the same spot as one of the prisms. These
are the truncated quasis and the truncated Platonics. (The
truncated icosidodecahedron maps to the same location as the
prism with 60-sided faces; the truncated dodecahedron and
truncated icosahedron map to the prism with 30-sided faces;
the truncated cuboctahedron maps to the prism with 24-sided
faces; the truncated cube and truncated octahedron (truncated
tetritetrahedron) map to the prism with 12-sided faces, the
truncated tetrahedron maps to the prism with 6-sided faces).
The duals of the Archimedeans match the duals of the prisms.

All Archimedean duals which have 4-sided faces fall on the
same spot on the graph as a dual of an Archimedean anti-
prism. The Archimedeans which pair with those duals co-occu-
py a spot with the anti-prisms themselves. These are the rhom-
bi-quasis and the great-circle figures (the rhombicosidodecahe-
dron maps to the anti-prism with 30-sided faces; the icosido-
decahedron maps to the anti-prism with 15-sided faces; the
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rhombicuboctahedron maps to the anti-prism with 12-sided
faces; the cuboctahedron (rhombitetritetrahedron) maps to the
anti-prism with 6-sided faces; and the tetritetrahedron (octahe-
dron) maps to the most famous prism of all, the cube).

The Archimedean duals, like all duals, owe the shapes of
their faces to the nature of the vertices of their dual-pairs, and
vice versa. An octahedron has faces made up of equilateral tri-
angles, whereas the cube has 3 edges meeting at equal angles.
The duals of the great-circle figures all have 4-sided faces,
because the great circles meet, creating four angles. The rhom-
bi, and all truncated Archimedean duals have 3-sided faces.

Only the snubs and their duals, which have 5-sided faces,
fall on the chart in a place not already defined by the prisms or
anti-prisms. Even they lie on their own straight line on the chart
which intersects the prism line at the icosahedron. This implies
that the snubs make up a category of their own. The whole
chart is contained in three pairs of straight lines. The prism and
dual-of-prism lines, the “3-lines,” meet at the tetrahedron; the
anti-prism and dual-of-anti-prism lines, the “4-lines,” run par-
allel, and very close to the “dual line,” and meet the “3-lines”
at the cube and octahedron, while the “5-lines” connect all
three snubs and their duals, and meet the “3-lines” at the
dodecahedron and icosahedron (the snub tetrahedron).

The separation of the “5-lines” of the snubs is another
example of their uniqueness.?* It is not that they are snubbing
the other polyhedra, of course, but there should be another
infinite set of polyhedra, which would fall under the snub
polyhedra. They would be like the prisms and anti-prisms,
except with five-sided duals. They don’t exist because they
are not constructable in the discrete universe. The snub poly-
hedra are as close as you can come, because of the limit
imposed by the nature of space. My opinion is that the angel
in Direr’s Melancolia is trying to construct such a set, but is
frustrated by the limits of physical space, and is thus, melan-
choly. The dual of what the angel has made in the woodcut
would have 3-sided faces, at any rate, and such a series
would show up on my chart at the same location as every
other prism, and not on the 5-line at all. This just shows how
impossible the project is.

Where the Platonic solids fall on this chart, is highly instructive,
and can be understood in the context of the next paragraphs.

Once you map the Archimedeans and their duals, you can
answer the question | asked about the location of the Platonics
in that scheme. Do you remember when we superimposed the
three families of Archimedeans? The dodecahedron, cube, and
tetrahedron all fell in the same spot, but the octahedron and
icosahedron seemed to randomly miss the target. The dinosaur
mouths were open different amounts. Well, do the same
superimposed mapping with the duals of the Archimedeans
and the Platonics. The icosahedron, octahedron, and tetrahe-
dron all map to the same place, and the dodecahedron and
cube splatter somewhere else.

This is awesome.

From the perspective we have just established, the cube and
dodecahedron belong to the same set of polyhedra as the
Archimedean solids, while the icosahedron and octahedron
belong with the Archimedean duals. If you map the Platonic
polyhedra that way, the families are completely symmetrical,
and once again the beauty of creation has smashed one of my



Figure 41

the figures.

Melancolia, by Albrecht Ditirer. Notice the large polyhedron behind

families is evenly divisible by 6. If you divide
each polyhedron’s edge-number by 6 and look at
the results as a one-dimensional graph, the tetra-
hedron family falls on 1, 2, 3, 4, 5, and 6. The
cube family falls on 2, 4, 6, 8, 10, and 12; while
the dodecahedron family falls on 5, 10, 15, 20,
25, and 30. The cube/tetrahedron enharmonic
intersections are at 2, 4, and 6; with the dodeca-
hedron/tetrahedron intersection at 5. That's it. The
fact that both the cube and dodecahedron family
have members with edges of 10 does not indicate
an enharmonic intersection; they just have the
same number of edges.

The utilization of the edge-axis in this way is
why, when | first started mapping the
Archimedean families, it was most convenient to
use the faces and vertices for a two-dimensional
view. The polyhedra seemed to bunch up in the
edge-axis view, and made the chart sloppy. |
thought that was a problem, and went on to do all
the work recounted above. If | had realized that
only using the edges for mapping, | could show
both the symmetry and intersections of the fami-
lies, | would have missed all this fun.

You can discourse on this topic, off the top of
your head with this simple chart in your mind.2>
Or draw itout: 1, 2, 3, 4, 5, and 6 down the cen-
ter of a piece of paper; 2, 4, 6, 8, 10, 12 on the
right side; and 5, 10, 15, 20, 25, 30 on the left.
Make sure that the numbers are lined up, 2 next
to 2, 4 next to 4, and so on; circle all 2’s, 4’s, 5’s,
and 6’s, and you're done. See Figure 40.

Once the idea is in your head, this is the only
mnemonic device you will need.

So, What Do We Have?
In summary, we have created two sets of tools,

pet theories into the mud.

When the icosahedron and octahedron enharmonically act
as Archimedean solids themselves, as snub tetrahedra and the
tetritetrahedron, then they map as Archimedeans and the
dodecahedron and cube map as Archimedean duals. The
tetrahedron, as the point of the wedge on our graph, and dual
of itself, participates in both sets.

The Platonic solids all occupy the 3-lines. The icosahedron
and dodecahedron occupy the 5-lines as well, because the
dodecahedron is a 5-sided-face dual of the snub tetritetrahedron
(icosahedron). The cube and octahedron occupy the 4-line as
well, because the cube is a 4-sided dual of the tetritetrahedron
(octahedron). Most ironically, all the lines intersect at the tetra-
hedron, even though it is neither a prism nor the dual of a prism.

The Chart in the Back of the Book
This is a lot to keep in your head. When | was reviving my
activity with the Archimedean families, a way of keeping the fam-
ilies and their relationships straight in my mind came to me. Don’t
tell anyone this trick, until they have done all the above work.
The number of edges of each member of the Archimedean

useful in the philosophical examination of geom-
etry, and, | might add, just as useful in the geometrical exami-
nation of philosophy.

The first set is the collection of great-circle figures: 3, 4,
and 6 even divisions of great circles by other great circles,
from which we create the 6, 9, and 15 other great-circle
arrangements which give you the Archimedean duals, and
the Archimedean polyhedra arranged in the three symmetri-
cal families. The great circles are useful in the planning and
construction of our polyhedra. All of these collections of
great circles together, I've come to call “God’s graph paper.”
(Figure 35).

The other set of tools is the mapping of the locations of the
polyhedra onto a three-dimensional grid. You have the three
families of Platonic and Archimedean solids, which look like
three constellations, and show the symmetry and intersections
of the families. Adding the duals of the Archimedean solids
shows how the dual-pairs are mirror images of each other,
while adding the prisms, anti-prisms, and their duals provides
a framework for the other polyhedra, and highlights some of
the processes that create the shapes. The various stages of this
mapping are useful in seeing what has been constructed.

21st CENTURY Summer 2005 75



]
3
6 —
8
Tetrahedron
10 family 10
12
Cube family
15
20 (Number of edges
divided by six)
25
30
Dodecahedron
family
Figure 42

CHARTING THE FAMILIES OF POLYHEDRA

This is the chart at the back of the book, showing how
the families of polyhedra intersect. The number of
edges of each member of the Archimedean families is
evenly divided by 6. If you divide each polyhedron’s
edge-number by 6 and plot the results in one dimen-

sion, this is the result.

Gridding or mapping the positions of the polyhedra is a tool to
examine the limits embedded in visible space. Don't look at the
graph as a thing. It is picture of a small part of the ongoing
process of creating the universe. Your examination of the chart is
part of that process of creation. It would be nice to build a chart
big enough to put models of the polyhedra where they appear on
the grid. Even if we do that, even if we have a few city blocks to
landscape, and the chart is big enough to walk around in, it
won't be a thing. Imagine walking along the 3-line by each of the
prisms, past the dodecahedron and the truncated tetrahedron,
until you reach the cube. You stop and look across the little
stream that represents the pyramid line, seeing the octahedron
and the anti-prism row leading off to your right, and reflect on
how many things the octahedron is doing at the same time, even
while it appears to be just sitting there: Your thoughts at that
moment are what'’s happening, not the models themselves.

These are really tools you can use to answer questions such as,
how is the axis of symmetry different in the dodecahedron vs. the
rhombic dodecahedron? They both have 12 faces, which are dif-
ferent shapes. How could there possibly be two dodecahedra
with differently shaped faces? The Composer didn’t sit down and
cut out cardboard. How do the faces orient to each other in each
polyhedron? Look at the 3-hoop and 9-hoop spheres. Clearly, the
center of each face of the rhombic dodecahedron falls at the cen-
ter of each edge of the tetritetrasphere, the evenly divided 3-hoop
construction. Now look at the dodecasphere in the 15-hoop
sphere. The center of each face of the dodecahedron also falls
on an edge of the 3-hoop tetritetrasphere, but not in the center
of the arc segment. Could it be that the center of the face divides
the edge at the Golden Mean? | think it does. When you divide
the arcs thusly, you have to choose either a right-handed or left-

handed orientation. This is another indication of

Figure 43
THE SHAPE OF SPACE Il

The beginning of everything!

the dodecahedron family’s affinity to the snub
figures. Try picturing that without the great-cir-
cle constructions as a guide.

The relationships presented here are true,
but what is the relevance? How that works is
up to you. The last thing you want is a well-
stocked tool box sitting unused in a closet.
Make, or borrow an hypothesis and then do
the constructions. Once you get the ball
rolling, it becomes a self-feeding process.

As a final inspiration, some wisdom from Act
I, Scene 5 of Mozart's opera Don Giovanni. Don
Giovanni (Don Juan) foolishly lets himself get
within arm’s reach of a former, abandoned lover
who is looking for him to make him marry her.
He wants to have his servant, Leporello, save
him by distracting her by recounting his lengthy
list of Giovanni’s amorous adventures:

He says (loosely), “Tell her everything.”

Leporello, missing the point, either on pur-
pose, or not, asks, “Everything?”

“Yes, yes, tell her everything.”

“And make it snappy,” she interjects.

“Well, ma’am, in this world, truly,” says the
embarrassed Leporello, “a square is not round.”

See, everybody used to know that geometry
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was the beginning of “everything.”26
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4. Johannes Kepler (1571-1630), The Six-cornered Snowflake, edited by
Colin Hardie, (New York: Oxford University Press, 1966), 74 pp. This is a
beautiful work.

5. My friend, Jacob Welsh, (b. 1989) has correctly pointed out that if you
squash a cube the right way, and make all the faces identically diamond-
shaped, this figure will also fill space. | maintain that a squished cube is still
a cube, so let the merriment continue.

6.Magnus J Wenninger, Polyhedron Models, (New York: Cambridge
University Press, 1971), pp. 12-13. Wenninger gives brief notes on con-
struction techniques. My current practice follows his closely; however,
when | started this project, | used wide, clear tape to cover each cardboard
face, and then taped the individual faces together.

7.Plato, Parmenides, or On Ideas, Logical, unpublished translation from
1990 by Leslie B. Vaughan.

8. To show what | mean by this, here are some news reports from the internet:
“One Critically Wounded during Rotterdam Soccer Riot—Rioting soccer
fans may have returned fire at police during a clash in central Rotterdam
Sunday night in which police shot into the crowd, wounding four people. . .
“Rome Soccer Riot Was Planned—A hardcore of Lazio and AS Roma
soccer fans worked together to spark the riot that caused the Rome derby
to be abandoned on Sunday, politicians said on Monday. Police on Monday
said they had arrested 13 supporters from both sides, some of them known
hooligans, following a 6-hour pitched battle between police and fans that
left more than 170 people injured. . . "

“Soccer Riot in Russia Kills One—Russian soccer fans rampaged near
the Kremilin after their team lost to Japan in the World Cup on Sunday, set-
ting fire to cars, smashing store windows and attacking a group of young
Japanese musicians. At least one man was killed in the melee. . . .”

9. The late, great Fred Wills (1928-1992), former Foreign Affairs and Justice
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Minister of Guyana, hero of the Colombo conference and the Non-Aligned
Movement, Shakespearean scholar, friend of Lyndon LaRouche, and crick-
etexpert of international renown, taught me that the above quote is almost
always useful, and incidentally, the oldest rhetorician’s trick in the book. if
someone has the misfortune to speak before you speak, you are in the perfect
position to trump his or her lead, like Regan does to the other “bad sister,”
Goneral, in King Lear.You can adopt all their hard work as your own. Anything
you add is by definition more than your unfortunate predecessor has said.

That is my role here, to build on the work that our “non-checkerboard”
faction has already done over the last 3,000 years or so. With any luck at
all we can end up in better shape than Regan does later in King Lear.
(“Sick, oh sick.”)

. Three symmetrical families; three pairs of Platonic solids; three sets of great cir-
cle figures: What is with all these threes? Now look, when we say that the
cube has 6 faces, we don't mean “6” in a Sesame Street, “one, two, three,
four, five, s-i-i-i-x,” kind of way. The 6 faces of a cube are oriented a certain
way: up, down, left, right, front, back. This 6 is not just a dead number, but is in
the process of going from somewhere to somewhere. In fact, you wouldn’t have
those concepts of direction without a reference like the cube. If fact, the structure
of the universe, which we are investigating here, determines where those 6
faces fall, and how they are shaped, and why they are unique. 6 doesn’t just
mean 6, at all. Likewise, the three families of Archimedean polyhedra are not
justthree, as in “three.” The past is not the future, and certainly bears no top-
ographical resemblance to the present. Past, present, future, your whole exis-
tence is shaped by the idea of three, but it is not just “a three.”

. Theropods (meaning “beast-footed”) were a sub-order of Saurischian
dinosaurs. They were fast-moving, bipedal carnivores (meat-eaters) with
grasping hands and clawed digits. They looked like the kind of turkeys that
could have you for Thanksgiving.

2. Deinonychus antirhopus, “Terrible Claw upturned” was supposedly a lightly
built, fast-moving, agile, bipedal (walked on two legs), bird-like dinosaur, which
could grow up to 10 feet long and lived from 110 to 100 million years ago.

3. Ceratosaurus, the “Horn Lizard” is said to have been a powerful predator
that walked on two strong legs, had a strong, “s”-shaped neck, and had a
short horn on its snout. The Ceratosaurus lived from 156 to 145 million
years ago and could be 15-20 feet long.

4. Tyrannosaurus rex, the “Tyrant lizard king,” was a huge meat-eating
dinosaur that lived during the late Cretaceous period, about 85 million to
65 million years ago. Until recently, Tyrannosaurus rex was the biggest
known carnivorous dinosaur, at 40 feet long. Current teaching has it that
the Giganotosaurus and Carcharodontosaurus are slightly bigger.

e

15.

16.

20.
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22.

23.

24.

25.

26.

Friedrich Schiller, “What Is, and to What End Do We Study Universal
History? 1789 Inaugural Address at Jena,” translated by Caroline Stephan
and Robert Trout, Friedrich Schiller, Poet of Freedom, Vol. II, (Washington,
D.C.: Schiller Institute, 1988), pp.254-255.

The course of studies which the scholar who feeds on bread alone
sets himself, is very different from that of the philosophical mind. The
former, whoforall his diligence, is interested merely in fulfilling the con-
ditions under which he can perform a vocation and enjoy its advan-
tages, who activates the powers of his mind only thereby to improve
his material conditions and to satisfy a narrow-minded thirst for fame,
such a person has no concern upon entering his academic career,
more important than distinguishing most carefully those sciences
which he calls “studies for bread,” from all the rest, which delight the
mind for their own sake. Such a scholar believes, that all the time he
devoted to these latter, he would have to divert from his future voca-
tion, and this thievery he could never forgive himself.

Peter Cook (1937-1995), “Sitting on the Bench,” Beyond the Fringe, (New
York: Samuel French, Inc. 1963).

Strange, but not odd, that a Cambridge-educated comedian would use
this as a joke title for a book in a comedy review.

“...I am very interested in the Universe and all that surrounds it. In fact,
I'm studying Nesbitt's book, The Universe and All That Surrounds It. He
tackles the subject boldly, goes from the beginning of time right through to
the present day, which according to Nesbitt is Oct. 31, 1940. And he says
the Earth is spinning into the Sun, and we will all be burnt to death. But he
ends the book on a note of hope, he says, ‘| hope this will not happen.'”

. Elliott Roosevelt, As He Saw It, The Story of the World Conferences of

FDR, (New York: Duell Sloan and Pearce, 1946), p. 36.

. This is what LaRouche says to do in the “Metaphor” paper, but this is not how

he saysto do it. He says, “From the 6-hooped figure containing dodecahedron
and icosahedron, the cube, octahedron, and tetrahedron may be readily
derived” And it can. However, you may see how the Platonic and other poly-
hedra may be formed from the three sets of evenly divided great circles.

. See Laurence Hecht and Charles B. Stevens, “New Explorations with the

Moon Model,” 21st Century, Fall 2004.

Magnus J. Wenninger, Dual Models, (New York: Cambridge University
Press, 1983), pp.1-6. Wenninger gives two methods to determine what the
dual of any polyhedron is. Going through this with a group of people would
make an interesting class.

.Robert Wiliams, The Geometrical Foundation of Natural Structure,

(Mineola, N.Y.: Dover Publications, Inc. 1972), pp.63-97. This section of Mr.
Williams’s book was significantly valuable to me when | first started con-
structing polyhedra. In particular, the face-angles of the dual polyhedra
made this portion of the project possible, before | had read Wenninger’s
Dual Models book referenced in footnote 19.

Don’'t make a polyhedron all black, unless you are going to hang it in a
nightclub. | was trying to highlight the fact that the Archimedean duals are
made up of only 3-, 4-, or 5-sided faces by making them black, gray, or
white, depending on how many sides the faces of the polyhedron had.
However, you can’'t see what the black ones look like in a photograph. They
do look mighty slick in person, though.

When | firstsaw the pattern, | thought it looked like a sampling of an ampli-
tude-modulated envelope ofincreasing amplitude, running for three-and-a-
half cycles of the modulating frequency. | later imagined that each family of
Archimedean solids and their duals could be connected by a pair of sine
waves 180 degrees out of phase with each other, either expanding from,
or contracting on, the Platonics, for three or four cycles. | am far from com-
plete in connecting each family’s dots with curves, or sine waves, rather
than dinosaur skeletons. It is more of an artistic proposition, than a scien-
tific one. That could be because | haven’t seen the pattern correctly.
Perhaps a bright young person with a fancy computer program, or even a
bright old person with a slide rule, could tidy this up.

My friend Gerry Therrien has spoken of how Kepler wrote about the attrib-
utes and genesis of the snub polyhedra. | hope he writes up his observa-
tions sometime. For now, look at the snub figures and then at any anti-
prism, and ponder the similarities.

Plato, Meno.

This is funny: Plato has Meno express amazement that Socrates can't even tell
him what virtue is, as Meno has spoken “at great length, and in front of many
people on the topic”” Later, when Socrates shows the slave why doubling the
sides of a square won’t double the area, Socrates says that, just a moment be-
fore the slave would have spoken at greatlength, and in frontof many people on
doubling the side of a square. Yes, Socrates did irritate a few people.

DON GIOVANNI: Si, si, dilie pur tutto.

(Parte non visto da Donn’ Elvira.) DONNA ELVIRA: Ebben, fa presto.
LEPORELLO: (Balbettando): Madama. . . veramente. . . in questo mondo
conciossiacosaquandofosseché. . . il quadro non & tondo. . . .
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