
Archimedean Polyhedra 
And the Boundary: 
The Missing Link 

"Geometry is  one and eterna l ,  a reflection 
from the m i nd of God. That mankind shares 
i n  it is because man is an i mage of God ."  

-Johannes Kepler' 

K
eeping i n  mind the above invocation, we are goi ng to 
develop, through a sometimes good-natured analysis 
situs of the Platonic and Archimedean polyhedra, an 

exami nation of the l im its that constrain  physical space. My 
contention is that the bou ndary demonstrated by the con
struction of the Platonic sol ids can not be fu l ly apprehended 
without involving the Archi medean polyhedra in the investi-
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There's more to the 
structure of space than 
meets the eye, as you'll 
see in this geometry 
adventure, which takes 
you to the limits of the 
universe. 

A view of Saturn 's rings. The 
study of the Platonic and 
Archimedean solids reveals 
that space has a structure, 
and that structure exposes a 
discoverable intention, 
which has created a 
boundary. 

gation. This d iscou rse is not meant to substitute for your work
ing through the discoveries of Carl Gauss or Bernhard 
Riemann, but is  meant to fi l l  a conspicuous gap in existing 
pedagogy. The Archimedean polyhedra are largely, and for 
qu ite sensible reasons, an u nexplored area of study, and on 
that basis, my subtitle is embl azoned above, for a l l  to see, as 
"The Missing L ink ."  

By the t ime we are done, we wi l l  have constructed the geo
metrical eq u ivalent of an imaginary toolchest which wi l l  then 
be ava i lable for your use in later efforts . This chest has an array 
of tools, arranged in two different drawers. One set of tools is 
real ized on the su rfaces of three spheres and comes from a 
place somewhere "above" the spheres. The other set is ren-



Figure 1 
KEPLER'S PLANETARY 

ORDERING 
Johannes Kepler (157 7 - 7 630), who 
discovered the principle of gravita
tion during his studies of the move
ments of the planets in the Solar 
System, saw a coherence in the har
monious ordering of the planets in 
their orbits, and the harmonious 
ordering of the nested Platonic solids. 

This is an engraving of Kepler's 
determination of the orbits of the 
planets, from his Mysteri u m  
Cosmographicum.  His ordering, 
beginning from the circumsphere 
defining the orbit of Mercury, are: 
octahedron, icosahedron, dodeca
hedron (of which the insphere is 
Earth and the circumsphere is Mars), 
tetrahedron, and cube. 

dered in two d i mensions, even though it was developed from 
a three-di mensional lattice. I haven't invented any of these 
tools. Some of them have been known for decades, others for 
mi l lennia, but the sets have never been assembled in this fash
ion before; nor, to my knowledge, has the ins istence been pre
sented that these tools, as sets, be used in the workshop of 
your m i nd. 

Why Archimedean Polyhedra? 
Study of the Platonic sol ids reveals that space is  not j ust an 

endless checkerboard; it has a structure, and the structure 
exposes a discoverable i ntention, which has created a bound
ary. 

There are five, and only five shapes that are convex polyhe
dra with regu lar, congruent faces whose edge-angles and ver
tices are equal : the Platonic sol ids (F igure 3 ) .  You can only 
make these five shapes with i n  those constraints, and hence the 
l imit. When you try to make more regu lar sol ids, say, by put
ting 6 triangles, or 4 squares together at a vertex, you don't get 
a sol id at a l l ;  you can't do it, no m atter how hard you try. The 
fact that your grand project of regular-polyhedron manufacture 
is brought to an abrupt halt after only five successes, says that 
there is more to the u n iverse than meets the eye. Someth ing in  
the make-up of  everyth ing you can see is different from what 
you see. That is the importance of the Platon ic  solids. They 
prove that we don't know what we are looking at. 

The u n iqueness of the Platon ic  sol ids proves that we are not 
l iving on a checkerboard at a l l ;  we are l iv ing in a goldfish 
bowl. The l i m its are rea l .  Admittedly, most people spend their 
time looking at the rocks and bubbles in their bowl, or they 
choose to play checkers on the nonexistent checkerboard, and 
wonder how long it w i l l  be u nti l feeding time. 

I wanted to know what the shape of the fishbowl is. Just how 
do the Platonic sol ids relate to the l i m it? How does it work? 
Does the visible un iverse push through the infin ite l ike a ship 

through the ocean, and are the regular polyhedra the wake? Is 
the d iscrete man ifold bash ing agai nst the contin uous man ifold 
l i ke a subatomic particle in a cyclotron, and are the Platonic 
sol ids the l ittle pieces spi n n i ng off i n  a bubble tank?  Or is it 
l i ke graphite dust on a kettle drum head, when sou nding dif
ferent notes causes the dust to dance i n  different standi ng
wave patterns? What is  it? What's going on? 

For about 1 0  years I watched the Platonic sol ids, hoping 
they would show me someth ing about the structure of the u n i
verse. I put cubes i nside dodecahedra, tetrahedra i nside 

Figure 2 
KEPLER'S ARCHIMEDEAN SOLI DS 

Kepler did extensive studies of polyhedra, and made 
these drawings of the Archimedeans, which was part of 
his geometry tool chest. 
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Cube Dodecahedron 

Tetrahedron 

Octahedron Icosahedron 

Figure 3 
THE FIVE PLATONIC SOLIDS 

The Platonic solids are convex polyhedra with regular, congru
ent faces whose edge-angles and vertices are equal. These are 
the only Platonic solid figures that can be constructed, hence the 
limit: cube, octahedron, tetrahedron, dodecahedron, and icosa
hedron. The cube and octahedron are dual-pairs, as are the 
dodecahedron and the icosahedron. Dual-pairs have switched 
numbers of faces and vertices, with identical numbers of edges. 

have anyth ing to do with them. Compared to the n ice, 
5 Platonics, there were 1 3  Archi medeans, which is 
bad enough. Plus there was an infin ite series of 
Archimedean prisms and another i nfinite series of 
Archimedean anti-prisms. And on top of that they a l l  
have duals, the Arch imedeans, the prisms, a n d  anti
prisms; and they are not d uals of each other l i ke the 
good old Platon ic sol ids are, either. Each of the 1 3  
Archimedean shapes has a u n ique dual that isn't an 
Archimedean solid, and al l  the prisms and anti-prisms 
have u n ique duals, too. Infi n ity times 4 p l us 1 3  
Archimedeans twice was too much. Archimedeans 
weren't for me. The 5 Platon ics did their job; I cou ld 
handle that just fine. 

Spheres Were My Downfall 
You can arrange each P laton ic sol id so that its ver

tices can touch the inside of one sphere. When you do 
that, i t  is said to be inscribed in the sphere. The center 
of each face of a Platon ic  can also touch another 
sphere. So can the center points of thei r  edges. A dif
ferent sphere can touch each location on each poly
hedron. This comes from the regularity of the Platonic 
sol ids. Spheres are important because they represent 
least action in space. J ust l i ke a c i rc le on a plane, 
spheres enclose the most area with the least surface. 

Spheres represent the cause of the l im i t  you run into 
when you try to make more than five P latonic sol ids.  
Just l i ke the guy in  F latland,2 who saw only a c i rcle 

cubes, octahedra i nside tetrahedra; I paired duals, ste l lated 
those that would stel late, and s l iced cubes and tetrahedra to 
see what their insides looked l i ke. None of these "interroga
tion protocols" worked; they sti l l  wouldn't ta lk .  

when a sphere popped i nto h is  world, the sphere is the 
h ighest level of least action we can apprehend with our sens
es alone. Perhaps the vertices of a Platonic sol id don't defi ne 
a sphere, but the sphere (or the n ature of space that makes the 
sphere unique) is what l i m its the P latonics. That's more l i kely. 
Spheres are what the l i mit  looks l i ke to us if we're paying I knew about the Archi medean sol ids and d idn't want to 
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1 2  edges 30 edges 

Figure 4 
THE PLATONIC DUALS 

Note that the tetrahedron is the dual of itself. 
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6 edges 

attention .  
That's an important part o f  studying 

geometry. How does the infin ite impact 
the u niverse we can see? Where does the 
complex domain intersect our domain?  
It's hard to  see. The guy in  F latland 
looked at a circle and saw a l i ne seg
ment; never mind the sphere that creat
ed the c ircle that looked l i ke a l ine to 
h im.  We aren't in much better shape 
than he was, when we are looking at 
spheres. Spheres, without the proper 
shading, just look l i ke c i rcles to us. 

Spherical Geography 
A straight l i ne on a sphere is a great 

c i rcle, l i ke the equator of the Earth. Look 
at a globe; we are talk ing about geome
try (Geo = Earth, metry = measure), 
right? Great c ircles are why Charles 
Li ndbergh flew over I reland to get to 
Paris. There are no paral lel straight l ines 
on a sphere. Any two great c i rcles inter
sect each other, not once, but twice, at 



exactly opposite sides of the sphere. 
You can do a neat trick with least action 

on a sphere. I saw this fi rst in a videotape 
of a class given by Larry Hecht (editor- in
chief of 27 st Century magazine), and later 
Lyndon LaRouche featu red the process in 
his paper "On the Subject of Metaphor" in 
Fidelia magazi ne.3 

If you d ivide a great c i rc le on a sphere 
with another great c i rcle, they d ivide each 
other in half, as stated above. Picture the 
equator and what we laugh ingly cal l  the 
Greenwich Meridian on Earth. Of cou rse 
the two great c i rcles don't have to be at 
right angles to each other; either of them 
can rotate around the poi nts where they 
meet (in this case in the Gulf  of Gu inea, 
off Ghana, and in the Pacific Ocean, 
where the equator and International Date 
Line meet-Figure 8).  

If you want to see how great c i rcles 
d ivide each other in  even d ivisions other 
than just in half, then the fu n begins.  

Take our or iginal  two great c i rc les. Go 
to where they meet, off Africa, and move 
west on the equator u nt i l  you hit  the 
Galapagos Islands and stop. You are ready 
to create a th i rd great c i rcle. Tu rn right and 
go north. You z ip over Guatemala, then 
over Min nesota, the North Pole, where 
you intersect the second great c i rcle, 
Siberia, China, Ind ian Ocean, equator 
again, Antarctica, the South Pole is anoth
er intersection, South Pacific, and you are 
back where you started, having i ntersect
ed the equator twice and the I nternational 
Datel i ne/G reenwich great c i rc le twice, 
too. 

The Archimedean solids 

The Archimedean duals 

Figure 5 
Now what do you have? The equator is 

divided into 4 equal parts by the other 2 
great circles. So is the International Date 
Line great c i rcle, and so is our new great 
circle. Three great c i rcles dividing each 

THE 1 3  ARCHIMEDEAN SOLIDS A N D  THEIR D UALS 
All hell breaks loose. The polyhedral neighborhood becomes very crowded. 
There are 7 3  Archimedean polyhedra, and they all have duals. 

other into 4 equal parts. The sphere of the Earth was just d ivid
ed into 8 equ i l ateral, right triangles by our 3 great c ircles 
(F igure 9). The great c i rcles i ntersect at 6 locations. I wonder 
how many different ways you can d ivide great c i rcles evenly 
with other great c i rcles? 

We got 4 even d ivisions with 3 great c i rcles, how about 3 
even divisions? Wel l ,  if you take the equator, or, I hope by now 
a 1 2-inch-diameter embroidery hoop, and d ivide it by other 
great circles into 3 parts, you don't get 3 parts. You get 6 parts, 
because pairs of great c i rcles meet at opposite poi nts of the 
sphere. There are no odd-numbered d ivis ions of a great c i rcle 
by other great c i rcles. Let's see what these 4 great c i rcles do. 
F i rst, make sure the 3 great c i rc les dividing you r  original one 
are also evenly divided i nto 6 segments by each other, and see 
what we have: All 4 c i rcles are d ivided i nto 6 equal parts
spherical equ i l ateral tr iangles alternating with spherical 

squares above and below the original c i rc le, and triangles sur
rou nding each pole. 

Six sq uares and 8 triangles; does that sound fam i l iar? 
Anyway, we are about to h it a l i m it here, j ust to warn you .  

The only other way for great c i rcles to evenly d ivide them
selves on a sphere is with 6 of them dividing each other into 
1 0  even segments. Try div id ing one great c i rcle into 5 equal 
parts-you can't do it; it wil l  make 1 0  d ivisions, just l i ke 3 
forced 6. This is very hard to see if you haven't done it your
self-so, do it yourself. You can get a pair  of 1 2- i nch-d iameter 
embroidery hoops for about a dol lar. What you end up with is 
real ly pretty, too. It is  a metaphor you can hold in  you r  hand. 

Twelve spherical pentagons and 20 spherical triangles. That 
sounds fam i l iar  too. 

Th ree hoops, 4 hoops, and 6 hoops; and no other combi na
tion wi l l  evenly d ivide great ci rcles-another l i m it, just l i ke the 
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Anti-prisms 

Figure 6 
PRISMS AND ANTI PRISMS 

There are infinite series of the prisms and the anti
prisms, and they all have duals too. 

Platonic sol ids are l i m ited in  number. (See Figure 9. )  
But, th is  is  the k i l ler:  Look at the 4-hoop construction. See 

the 1 2  places the hoops intersect each other? There are 6 
around the middle, 3 on top and 3 on the bottom. 

Wel l, if you stacked up identical marbles, you could put 6 
marbles around one marble on a flat su rface. Make sure that 
each of those 6 marbles have 6 around them, too. Keep doing 
this over and over, and cover your whole floor with a neatly 
arranged layer of marbles; then get ready for the second level. 
In  the second layer, you could put 3 marbles around any one 
marble in the first layer, either in the 1 2, 4, and 8 o'clock posi
tions, or alternately, in the 2, 6, and 1 0  o'clock positions. 
Choose one of the two arrangements and add enough marbles, 
and you wi l l  complete the second level, which wi l l  look just 
l i ke the first leve l .  

When it comes time to  do the th i rd level, you have a deci
sion to make. You can put the th i rd level in one of two orien
tations. You can put them d i rectly over the marbles in the first 
level, or you can take the path less travel led : Put the marbles 
over the position you didn't select for the second 
level .  If you do this, and keep the pattern up unt i l  
you fi l l  your room entirely with marbles, you wi l l  
have two th ings, besides a heck-of-a-Iot of mar-
bles. One is a room fi l led with the most marbles 
that could possibly be put into the room, no mat
ter what other method you used to stack them up:  
They are "close-packed. "  The other th i ng is  this :  
Look at any marble.  Where does it touch the other 
marbles? I t  touches 6 around the middle, 3 on top 
and 3 on the bottom-j ust l i ke the intersections of 
the 4 hoops! The even d ivisions of 4 great c ircles 
generate the very same si ngu larities where the 
hoops intersect, that close-packing of spheres 
does where the spheres touch. (See Figure 1 0.) 

Remember that I d id n't want to construct the 
Archimedean solids? Here's how it happened. 

.. 

.. 

.. . 

",. 

NASA 

Figure 7 
OUR EARTHLY SPHERE 

The sphere represents least action in "three dimensions. "  
A great circle is a straight line in spherical geometry. 

triangles. The dual of the cu boctahedron is cal led the rhombic 
dodecahedron.  Dodecahedron means that it has 1 2  faces, l i ke 
the regu lar Platonic dodecahedron; and rhombic means the 
faces are rhombic in shape, that is, d iamond-shaped rather 
than the pentagonal shape you are used to. The rhombic 
dodecahedron is  the shape of the honeycomb that Kepler d is
cusses in the "The Six-Cornered Snowflake" paper.4 Rhombic 
dodecahedra fi l l  space. That means you can stack them up 
with no a i r  between them. Because spheres close-pack i n  a 
way that generates the vertices of cuboctahedra, the dual of 

Figure 8 
G REAT C I RCLES I NTERSECTING 

The spherical faces of the 4-hoop construction 
represent an Archimedean sol id cal led the cuboc
tahedron:  "Cube-octahedron" is 6 sq uares and 8 

Great circles intersecting each other on a sphere always divide each 
other in half. That is about as "Ieast action" as you can get. 
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Octahedron Cuboctahedron Icosidodecahedron 

Figure 9 
G REAT CIRClES AND SPHERICAL POLYGONS 

There are only three ways great circles can divide themselves into even 
sections which result in spherical polygons. The 3, 4, and 6 great-circle 
hoops represent the spheres which contain the great-circle figures below 
them: octahedron, cuboctahedron, and icosidodecahedron. 

Parmenides go through the whole th ing. 
Parmenides d idn't want to, and said, " . . .  and 
so I seem to myself to fear, remembering how 
great a sea of words I must whirl about in ."7 
Yes, I was caught. 

What Most People Think 
Archimedean Solids Are 

Here are the 1 3  different Archimedean 
shapes: Two of them, we are told, are more 
regular than the others, and are cal led "quasi
regular."  You have a l ready run into them; 
they are the cu boctahedron and the icosido
decahedron, which are defined by the 4- and 
6-great-circle constructions. The cuboctahe
dron has the 6 square faces of the cube and 
the 8 triangular faces of the octahedron.  The 
icosidodecahedron has 1 2  pentagonal faces 
l i ke the dodecahedron and 20 triangu lar 
faces l i ke the icosahedron. (See Figure 1 2 .) 

The next five of the Arch imedeans are not 
a b ig problem to visual ize either; I cal l  them 
the tru ncated Platon ic  group (Figure 1 3) .  
There is  one of them for each Platonic solid, 

the cuboctahedron, by defi n ition, can fi l l  space. Now this 
wouldn't be so earthshaki ng, except for this fact: There is only 
one other polyhedron in  the enti re u n iverse that has all of its 
faces identical ly shaped, and can fi l l  space 

and they include the only polyhedron that people regu larly k i l l  
and d ie  for to th i s  day, the  tru ncated icosahedron, which  is in  
the shape of  a soccer bal 1 . 8  

the way the rhombic dodecahedron does; 
that is the cube. Just those two with that 
l imit-the cube and rhombic dodecahe
dron-and noth ing else fi l l s  space.s 

When Larry Hecht pointed this out on the 
videotape I saw, my heart sank. I knew that 
I was trapped; I h ad to construct the 
Archimedean solids,6 because the dual of 
one of the Arch imedeans had expressed a 
relationsh ip  to the same k ind of l im it that the 
Platon ic solids express. This is the same l imit 
that the great circles represent when evenly 
dividing themselves. It was all one package. 

I was cornered. I felt l i ke that old bastard 
Parmenides, who was trapped by the 
young Socrates i nto laboriously defending 
his l ife's work, rather than p laying m i nd 
games with a group of bright you ng people. 
Socrates had accused Parmenides' hench
man, Zeno, of lying to 
advance Parmen ides' 
theories. Zeno and 
Parmen ides responded 
not by losing their  tem
per, but by tryi ng to 
recruit Socrates to thei r  
way of  thinking (the best 
defense is a good 
offense, even back then), 
but Socrates maneu
vered Zeno i nto having 

Rhombic dodecahedron 

Christine Craig 

Figure 1 0  
ClOSEST PACKING I N  SPHERES 

II/f==(1 , I ___ L� 
! I \ . i " �, 

Cube 

Figure 1 1  
SPACE-FI LLI NG POLYH EDRA 

A Platonic solid, the cube, and the dual of 
an Archimedean, the rhombic dodecahe
dron, are the only two space-filling poly
hedra with identical faces. The rhombic 
dodecahedron is the shape of the honey
comb cells made by bees. Can you see the 
hexagons implicit in the figure? 
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Cuboctahedron Icosidodecahedron 

Figure 1 2  
QUASI-REGULAR POLYHEDRA 

The quasi-regular polyhedra are the great-circle figures 
containing the dual Platonic solids reflected in their 
names. 

In each case you can imagine starti ng with a Platonic sol id .  
For each Platonic face, however, there is a face with twice the 
number of sides. For example, the tru ncated cube has 6 octag
onal faces instead of the 6 square faces of a cube. Where the 
Platonic sol id had a vertex, there is  now a face, which looks 
l i ke the faces of the dual of the original P laton ic sol id .  The 
truncated cube has 8 triangu lar faces, located where the 
cube's vertices were, s ituated in the same axis as the octahe
dron's faces. This works for the others, too. The truncated octa
hedron has 8 hexagonal faces and 6 square ones. The truncat
ed tetrahedron has 4 hexagonal faces from the 4 triangles of 
the tetrahedron. The tetrahedron's dual is the same shape as 
itself, so you have 4 triangles in the truncated tetrahedron, too. 
The truncated dodecahedron has 1 2  ten-sided faces and 20 tri
angles, whi le the truncated icosahedron has 20 hexagons and 
1 2  pentagons. 

Figure 1 4  
TRU NCATED QUASI-

REGULAR SOLIDS 

Truncated tetrahedron Truncated cube 

Truncated 
dodecahedron 

Figure 1 3  

Truncated 
icosahedron 

Truncated 
octahedron 

TRUNCATED PLATONIC GROUP 
These are the Archimedean polyhedra which appear to 
result from truncation transformations on the corre
sponding Platonic solids. 

That wasn't too bad. We are done with 7 out of 1 3  a l ready. 
It does get stranger from here on out, though. I n  ascending 

order of weirdness, you next have a pair of sol ids, which I cal l  
truncated quasi  (quasi, for short) because they are truncated 
versions of the quasi-regu lar Arch imedean sol ids. These are 
the truncated cuboctahedron and the tru ncated icosidodeca
hedron (Figure 1 4) .  Where the cuboctahedron has squares and 
triangles, the truncated cuboctahedron has octagons and 
hexagons. In add ition, where the cuboctahedron has 1 2  ver
tices, the truncated cuboctahedron has 1 2  square faces. 
Where the icosidodecahedron has pentagons and triangles, 
the truncated icosidodecahedron has 1 O-sided faces and hexa-

The great-circle figures (the 
quasi-regular polyhedra) can 
also be truncated, giving the 
truncated cuboctahedron and 
the truncated icosidodecahe
dron. 

Truncated 
cuboctahedron 

Truncated 
icosidodecahedron 
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Figure 1 5  
RHOMBIC QUASI
REGULAR SOLIDS 

Transformations can also be 
made on the great-circle (quasi
regular) Archimedean polyhe
dra, leading to the rhombic 
great-circle figures, the rhombi
cuboctahedron and the rhombi
cosidodecahedron. 

Summer 2005 

Rhombi
cuboctahedron 
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Rhombi
icosidodecahedron 

Snub cube Snub dodecahedron 

Figure 1 6  
SNUB LEFT- A N D  
RIGHT-HANDED 

There are two sets of snub polyhe
dra in the standard Archimedean 
arrangement: the left- and right
handed snub cubes, and the left
and right-handed snub dodecahe
dra. 



gons, with the add ition of 30 square 
faces where the icosidodecahedron 
vertices were (F igu re 1 4) .  

The next pair, the rhombicubocta
hedron and the rhombicosidodeca
hedron, are s impler, but one of them 
is harder to see. These are cal led 
rhombi-quasi polyhedra, and they 
have the same square faces from the 
vertices of the quasi-regu lar sol ids as 
the previous pair does, but the other 
faces are the same shape as those of 
the quasi-regular sol ids, themselves, 
not double the n umber, l i ke in the 
quasi, above. The rhombicosidodec
ahedron has 1 2  pentagons, 20 trian
gles and 30 squares for faces, and 
looks kind of obviously what it is, but 
the rhombicu boctahedron h as 1 8  
square and 8 triangular faces (F igure 
1 5). This confused me when I fi rst 
saw it, because the squares, even 
though they looked a l i ke, actual ly 
came from two different processes 
(the square faces of the cube, and 

(a) Cube/octahedron family 

Truncated cube Truncated Cuboctahedron Rhombi- Truncated Snub cube 
octahedron Guboctahedron cuboctahedron 

(b) Dodecahedronlicosahedron family 

Truncated Truncated Rhombicosi- Truncated Snub 
dodecahedron icosahedron 

Icosi
dodecahedron dodecahedron icosidodecahedron dodecahedron 

Figure 1 7  
STA N DARD ARCH IMEDEAN ARRANGEMENT 

Two families of polyhedra are related to the 
Platonic;:s: the cube/octahedron family, and the 
dodecahedron/icosahedron family. The truncated 
tetrahedron sits alone in the tetrahedron family. 

(c) Tetrahedron family 
Truncated tetrahedron, all by itself 

squares from the vertices of the cuboctahedron) . This is the 
kind of ambigu ity that can drive you nuts, unti l you rea l ize that 
the whole point of what you are doing, in the geometry biz, is 
finding this kind of puzzle, and solving it. 

the icosidodecahedron, the rhombicosidodecahedron, the 
snub dodecahedron, and the truncated icosidodecahedron .  

Speaking o f  ambiguity that can drive you nuts, the last two 
Arch imedeans are the snub cube and the snub dodecahedron. 
The snub cube, mercifu l ly  has 6 square faces. So far so good, 
but it also has 30 triangular faces. The snub dodecahedron has 
the expected 1 2  pentagonal faces, and 80 triangu lar faces. If 
you think that's bad, I ' l l  tel l  you that there real ly are two dif
ferent snub cubes and two different snub dodecahedra. They 
are made up of the same parts, but the way they are put 
together makes them look l i ke they are twisted to either the left 
or the right (F igure 1 6) .  

That's it; those are the 1 3  Archimedean shapes. 
The way these shapes are 

trad it ional ly organ ized i s  
apparent from the i r  names. 
There are three sets arranged 
by dual-pa i r  type: the tetra
hedron, the cu be/octahe
dron, and the dodecahe
dron/icosahedron. One set 
contains only the truncated 
tetrahedron. The next one 
contains the truncated cube 
and tru ncated octahedron, 
the cu boctahed ron, the 
rhomb icuboctahedron, the 
snub cube, and the tru ncat
ed cuboctahedron. F ina l ly, 
you h ave a set conta in ing 
the truncated dodecahedron 
and truncated icosahedron, 

Figure 1 8  
THE TRUNCATED CUBE 

The truncated cube has 6 
octagonal faces where the 
cube had 6 square faces, 
and 8 triangular faces 
where the cube had 8 
three-face vertices. 

Now, I tried a more clever approach, asking why the tetra
hedron group was such a l ittle, n ubby fami ly, whi le  the other 
Platonic sol ids have such n ice big fam i l ies? 

What Archimedean Polyhedra? 

Act 1 ,  scene 1 of King Lear: 

REGAN : Sir, I am made 
Of the self-same metal that my sister is, 
And prize me at her worth. In my true heart 
I find she names my very deed of love; 
Only she comes too short . . . .  9 

Figure 1 9  
FROM THE TRU NCATED CUBE TO 

THE TRUNCATED CU BOCTAHEDRON 
The truncated cuboctahedron retains the 6 octago
nal faces from the truncated cube, but 8 hexagonal 
faces replace the 8 triangular faces. Additionally, 1 2  
squares appear where the cube's edges were. 
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is to As is to 

x = ?  

Figure 20 
ANOTHER TRANSFORMATION TO PRODUCE ? 

The truncated tetrahedron (upper right) has 4 hexagonal 
faces in place of the tetrahedron's triangular faces, and 
4 triangular faces where the tetrahedron had vertices. 
Transform it analogously to the transformation of the 
truncated cube to the truncated cuboctahedron. Retain 
the 4 hexagonal faces from the truncated tetrahedron, 
and add 4 more hexagonal faces to replace its triangu
lar faces, then add 6 squares, one for each tetrahedron's 
edge. What do you get? 

After I saw Larry H echt's cl ass, I d id make a l l  the 
Archimedean sol ids. I t  took weeks, and I h ighly recommend 
that readers do the same. You can look at a sti l l  picture of 
them, or nowadays even download an interactive fi le from the 
i nternet, but it isn't the same as planning how many of each 
face you need, constructing the faces, and trying to fit them 
together so that it looks l i ke i t  is  supposed to. Anyway, in mak
ing the Archimedean sol ids, I became more and more upset at 
the injustice bei ng meted out to our l ittle friend, the tetrahe
dron. Not only did he have to pretend he had a dual by acting 

Tetrahedron family 

Cube/octahedron family 

Dodecahedron/icosahedron family 

Figure 22 

is to As is to 

Figure 2 1  
A TRU NCATED TETRITETRAHEDRON 

Eight hexagons, 6 squares! A truncated tetritetrahe
dron-a new role for the Archimedean solid also 
known as the truncated octahedron. 

the part h i mself, but where the other Platon ic d ual-pa i rs have 
6 or 7 Archimedean sol ids associated with them ( if you count 
left- and right-handed snubs separately you get 7 each), the 
tetrahedron had only one Archimedean to play with. 

I decided that this i njustice would not stand. But what cou ld 
I do about it? One thing I knew, I wasn't going to mess with 
the dodecahedron fami ly-80 triangles in  a snub dodecahe
dron? So, the cube fami ly it is. The truncated cuboctahedron 
looked busy enough to get my teeth into, and the tru ncated 
cube looked to me l ike what was happen ing on it was clear 
enough, so that's where I started. I set up this puzzle:  What 
would you get if you d id to the truncated tetrahedron the same 
thing that was done to a tru ncated cube to get a truncated 
cuboctahedron? You know, A is to B as C is to X. What could 
be easier? (F igures1 8-2 1 .) 

The truncated cube has 6 octagonal faces, and so does the 
tru ncated cuboctahedron. The tru ncated 
cuboctahedron has 8 hexagonal faces 
where the truncated cube has 8 trian
gles. So far so good. And the truncated 
cuboctahedron has 1 2  square faces, 
where the cube has 1 2  edges. That is the 
A i s  to B part. Now for the "C i s  to X" 
part: The tru ncated tetrahedron has 4 
hexagonal faces, so X has 4 hexagonal 
faces, too. Four triangu lar faces become 
4 other hexagonal faces, and the 6 edges 
of a tetrahedron become 6 square faces 
in X. What is it? What do we have? Four 
plus 4 hexagonal faces are 8 hexagonal 
faces and 6 square faces. E ight hexago
nal faces and 6 square faces; it has to 
work. 

AN ADDITION TO THE ARCHIMEDEAN SOLIDS 
I t  does! Eureka! A new polyhedron 

l ives! The tetrahedron has another fam i
ly member. It's a l ive ! I've invented a new 
Archimedean sol id :  8 hexagons and 6 

The tetrahedron family now has two members. 
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square faces, and it has a l l  
of its fi ngers a n d  toes. It 
looks just l i ke . . . .  

Wait a Minute 
What does it  look j ust 

l i ke? We have a l ready done 
8 hexagons and -6 squares, 
and if it is an Archimedean 
sol id with regular faces, and 
all, then they both have to 
be the same shape: the trun
cated octahedron. 

Yes, look at it, the truncat
ed octahedron, 8 hexagons 
and 6 squares, is sitting i n  
the tetrahedron fam i ly, act
ing l i ke a tru ncated q uasi ,  a 
truncated tetritetrahedron. 
The cube fam i ly  is in tersect
ing with the tetrah ed ron 
fami ly. The shape of the 
truncated octahedron is act-
i ng l i ke a tru ncated tetrite-
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Figure 23 
THE SHAPE OF SPACE trahedron, just l i ke F# on 

the piano is also G-fl at. 
They are "enharmon ic 
shapes." 

Another view of the Archimedean families. 

When I first d iscovered this, I was so happy, I a l most forgot 
entirely my mission of gri l l i ng the P latonic sol ids for their 
secrets. I made an attractive, n icely  colored poster with the 
pretentious name, "The Shape of Space," which had the 
Platonic and Archimedean sol ids arranged in  the symmetrical 
cube/octahedron and dodecahed ron/icosahedron fami l ies, 
centered on the quasi-regu lar  polyhedra; and the tru ncated 
tetritetrahedron was connected to the cube fam i ly with l ittle 
dotted l i nes. It was pretty, and took some time to make, but 
completely ignored the fact that the tetrahe
dron sti l l  had a long way to go to ach ieve the 
equal rights i t  deserves as a fu l l y  vested 
Archimedean sol i d  and head of a fam i ly. 

At that poi nt, LaRouche put out  h i s  
"Metaphor" paper, i n  which he h i t  t h e  great
circle question real l y  hard .  The "Metaphor" 
paper set me to th ink ing aga in .  I h ad sup
posed that the sphere had to be a major way
point on the route to the creation of the 
Platonic sol ids; and the quasi-regular sol ids 
(the cuboctahedron and icosidodecahedron) 
were clearly generated by even d ivisions of 
great circles on a sphere; and LaRouche 
made no bones about the fact that the way to 
construct the P latonic sol ids was with great 
circles on spheres. But why, then, was the 

a lous." What I meant to say was, " I s  the Composer of the u n i
verse a spaz?" Who wou l d  design someth ing that odd ? 

What bothered me was the apparent u nevenness of the pat
tern in my shape-of-space chart. It was that tetrahedron fami
ly that was out of p lace. I finally decided to look i n  that d i rec
tion. 

I knew that whi le the cube was the dual  of the octahedron, 
and the dodecahedron was the dual  of the icosahedron, the 
tetrahedron was the dual of itself. Wel l , in order to exam ine 

Figure 24 
EVEN DIVISIONS OF G REAT CI RCLES epitome of clean, least action result ing in  an 

oddbal l h odgepodge of two Archimedean 
sol ids and one Platonic sol id ?  (F igures 24.) 

This was real ly messy. When I fi rst wrote 
about this 1 0  years ago I said, "How anom-

The epitome of clean, least action--even divisions of great circles on a 
sphere-results in the oddball hodgepodge of two Archimedean solids 
and one Platonic solid. 
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Rhombicosidodecahedron 

Left and right snub dodecahedron 

Figure 25 
THE GREAT CIRClE FIGURES AND DUAL PAIRS 

Two of the polyhedra formed by great circles have faces reflecting 
the dual pairs of Platonic solids. The 72 pentagonal faces of the 
dodecahedron and the 20 triangular faces of the icosahedron cre
ate an icosidodecahedron. The 6 square faces of the cube and the 
8 triangular faces of the octahedron create a cuboctahedron. 

Because the tetrahedron is the dual of itself, you could say that 
there is a dual-pair of tetrahedra, too. You take the four triangular 
faces of one tetrahedron and the four triangular faces of the other 
tetrahedron and create-a tetritetrahedron, also known as an 
octahedron. 

Rhombitetritetrahedron 

Left and right snub cube 

Figure 27 

Figure 26 
THE RHOMBIC TRANSFORMATIONS 

In the cube/octahedron family, the rhombi
cuboctahedron can be formed by taking the 
cuboctahedron and adding squares in place 
of all its vertices. In the dodecahedron/icosa
hedron family, the rhombicosidodecahedron 
can be formed by taking the icosidodecahe
dron and adding squares in place of all its 
vertices. 

Similarly, in the tetrahedron family you 
would start with the octahedron (or as we 
would call it in this family, the tetritetrahedron) 
and add squares to the vertices. That gives us the 
cuboctahedron again, known as the rhombi
tetritetrahedron in this enharmonic incarnation. 

Left and right "snub tetrahedron" 

TH E SNUB TRANSFORMATIONS 
To make a snub cube, surround the square faces of a cube with an alternating lattice of triangles, with one triangle for 
each edge of each of the cube's faces, and one triangle for each face of the cube's dual, the octahedron. 

To transform the great-circle (quasi-regular) icosidodecahedron to its snub, add 60 more triangles to the 12 pentagonal 
faces of the dodecahedron and the 20 triangles of the icosahedron-2 triangles for each of the icosidodecahedron edges. 

And for a snub tetrahedron, take 4 triangles for the tetrahedron 's faces, 4 triangles for the other tetrahedron's faces, and 
7 2  triangles. That's 20 triangles, 2 for each of the tetritetrahedron (octahedron) edges-Ieft- and right-handed, of course. 
Yet another enharmonic solid is revealed-the icosahedron-known in this relationship as the snub tetrahedron. 
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Faces Edges 

8 1 2  1 8  Triakis tetrahedron Truncated tetrahedron 1 2  8 1 8  
(both o f  them) 

1 4  1 2  24 Rhombic dodecahedron Cuboctahedron 1 2  1 4  24 

14 24 36 Tetrakis hexahedron Truncated octahedron 24 1 4  36 

14 24 36 Triakis octahedron Truncated cube 24 1 4  36 

26 24 48 Deltoidal icositetrahedron Rhombicuboctahedron 24 26 48 

38 24 60 Pentagonal Snub cube 24 38 60 
icositetrahedron 

32 30 60 Rhombic triacontahedron Icosidodecahedron 30 32 60 

26 48 72 Disdyakis dodecahedron Truncated cuboctahedron 48 26 72 

32 60 90 Pentakis dodecahedron Truncated icosahedron 60 32 90 

32 60 90 Triakis icosahedron Truncated dodecahedron 60 32 90 

62 60 1 20 Deltoidal hexecontahedron Rhombicosidodecahedron 60 62 1 20 

92 60 1 50 Pentagonal 
hexecontahedron 

Snub dodecahedron 60 92 1 50 

Truncated 
62 1 20 1 80 Disdyakis triacontahedron icosidodecahedron 1 20 62 1 80 

Figure 28 
THE ARCHIMEDEANS AND THEIR DUALS 

these anomal ies, I decided to see if the tetrahedron fam ily 
could be made to conform to the pattern created by the other 
two fami l ies. 

If the tetrahedron is the dual  of itself, then the tru ncated 
tetrahedron should show up in the pattern twice also. That 
makes sense. 

The quasi-regular slot in the other fami l ies could be thought 
of as forming thus:  Take the 6 square faces of the cube and the 
8 triangular faces of the octahedron, and create a cuboctahe
dron. Take the 1 2  pentagonal faces of the dodecahedron and 
the 20 triangu lar faces of the icosahedron and create an icosi
dodecahedron (Figure 25) .  So, in the tetrahedron family you 
take the 4 triangu lar faces of the tetrahedron and the 4 trian
gular faces of the other tetrahedron and create . . . .  The quasi
regu lar polyhedron i n  my hypothesized tetrahedron family 
was the octahedron, the very same figure that I h ad construct
ed for that slot using LaRouche's great-circle method earl ier. 
That was amazing, even electrifying. 

In  an instant I went from a perception of a cluttered u n iverse 
and a nice tidy theory, to a more orderly u n iverse and a pet 
theory blown to sm ithereens. 

Now I was sure I cou ld fi l l  up the empty spaces in the 

tetrahedron fam i ly. I on ly had two left to do. The rhom
bicuboctahedron looks l i ke i t  is formed by taking the cu boc
tahedron and add i ng squares where the edges were (F igure 
26).  The rhombicosidodecahedron looks l i ke you take the 
icosidodecahedron and add squares where its edges were. I n  
the tetrahedron fami ly  you wou ld start with t h e  octahedron 
(or as we wou ld now cal l  i t  in th is  fam i ly, the tetritetrahe
dron) and add squares to the edges. What do you get? The 
result  was a figure with 8 tria ngles and 6 squares-a cuboc
tahedron-a polyhedron a l ready created, which we cou ld 
now cal l  the rhombitetritetrahedron, i n  this new, enharmon
ic i ncarnation. 

This was gett ing i nterest ing .  I now had three polyhedra 
from the cuboctahedron fam i l y  serv ing double-duty in the 
tetritetrahedron fam i ly, and there was one figu re left: the 
"snub tetrahedron," if there were such a th ing.  S n u bs (the 
snub cube and the snub dodecahedron) weren't on my 
"favorites" l ist. They were messy; they d idn't h ave the same 
n umber of faces that the rest of their  fam i l ies d id .  The snub 
cube had 6 squares, a l l  right, but h ad 32 tr iangles! The snub 
dodecahedron h ad the expected 1 2  pentagons, but 80 trian
gl es, as a l ready mentioned, and it wasn't clear what they a l l  
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THE POLYHEDRAL FAMILY RELATIONSHIPS 
This is one way of looking at the family relationships 
within any of the polyhedral families. 

were doing or why. This  was about the l ast time that an 
anomaly l i ke that i rritated me. I started to look forward to 
them after I d id the work represented by the next para
graphs. 

To make a snub cube, you surround the square faces of a 
cube with an alternating lattice of triangles. You have one tri
angle for each edge of each of the cube's faces, and one tri
angle for each face of the cube's dual, the octahedron. Six 
square faces and 6 times 4 sides is  24 triangles, plus 8 octa
hedral triangles makes the 32 triangles (Figure 27) .  

L ikewise, i n  the snub dodecahedron you surround the pen
tagons in the same manner. Now, to create the supposed snub 
tetrahedron you would surround 4 triangles with the same pat
tern of alternating triangles. That is, 4 faces with 3 edges each, 
which would give you 1 2  triangles; add 4 triangles from the 
tetrahedron and 4 triangles from its dual .  That wou ld give you 
a figu re made up of 1 2  plus 4 plus 4: 20 triangles. Do we have 
someth ing l i ke that a lready? Yes, of course we have 20; it's 
ca l led the icosahedron!  The icosahedron is also a snub tetra
hedron, and the icosahedron is from the dodecahedron fami
ly, too, not the cube fami ly. The dodecahedron fam i ly is  enhar
mon ical ly partic ipating in  the tetrahedron fam i ly, as wel l !  A l l  
of  a sudden, the snubs didn't seem so bad after a l l .  They had 
fi l led up the tetrahedron fami ly. The pattern was complete. 

We now have three total ly symmetrical fam i l ies of polyhe
dra. Each fami ly has the same n umber of members as the other 
two fam i l ies, perform ing the same function in each fami ly. 
Starting with even d ivisions of great c ircles on a sphere, with 
the 3 ,  4, and 6 hoops; each fam i ly has a polyhedron d i rectly 
mapped from the vertices of the hoops. Every fami ly also has 
two Platonics, duals of each other, whose faces are contained 
in the previous figure. They have a truncated version of each 
Platonic, a rhombic version of the great-circle figure, a trun
cated version of the great-circle figure, and a snub figure, left
and right-handed. The fam i l ies are connected by three poly
hedra in the cuboctahedron fam i ly and one member of the 
icosidodecahedron fami ly, appearing in the tetrahedron fam i-
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Iy as "enharmonic" sol ids. 
This was a mi lestone, but I wasn't done. One huge batch of 

work I foresaw was, how do you a rrange the fami l ies so that 
both their symmetry and their i nterconnections are clear? That 
wou ld be an updated and more accu rate version of my oid 
"Shape of Space" poster. 

The other issue that came up some t ime later, as a surprise, 
was that each of the Arch imedeans has a dual .  How do they 
fit into the pattern ? 

Another big issue was this:  Clearly, the Composer of the un i 
verse d idn't hack off the vertices of  a cube with a kn ife to 
make a truncated cube. How d i rectly do great circles partici
pate in the construction of the Archi medeans, or Platon ics for 
that matter? 

Where Archimedean Polyhedra Meet 
We began with the assumption that space wasn't just an end

less checkerboard. In investigating the l im its of visible space, 
starting with the Platonic sol ids as symbolic of shapes that were 
formed by the confines bui lt into the nature of creation, we 
fashioned a set of three, symmetrically ordered fami l ies of poly
hedra, each conta in ing Platonic and Archimedean sol ids. 

The fami l ies are connected by three polyhedra shared by 
both the cuboctahedron and the tetrahedron fami l ies as enhar
monic shapes. These are polyhedra that look a l i ke, but whose 
genesis and usage in this scheme, make them different. There 
is also one member of the icosidodecahedron fami ly that is  
enharmon ically shared with the tetrahedron fami ly  as wel l .  No 
member of the cube or dodecahedron fam i ly touches each 
other, but both of those fam i l ies touch the tetrahedron fam i ly. 

The sign ificance of this arrangement goes back to the age-old 
appreciation of the u n iqueness of the Platonic sol ids. The l im it 
bu i lt into the u n iverse is manifested in the fact that you can 
construct only five shapes that conform to the restrictions that 
define the Platonic sol ids. That same l im it restricts the number 
of ways that the great c ircles d ivide each other evenly. There 
are only three ways to do it. Once you recognize the way the 
fam i l ies intersect, you realize that you are looking at three sym
metrical fami l ies, which contain three pairs of Platonic solids, 
generated by three sets of great-circle figures. lO  

After I remanufactured a l l  the Platonic and Archimedean 
sol ids with the faces of each sol id instructively colored, I want
ed to develop a pedagogy that wou ld enable people to see 
both the symmetry of the fami l ies and how they i ntersected. 
My set of a l l  these polyhedra had the cube, and a l l  faces of 
other polyhedra that shared the cube's orientation and func
tion, colored green. The octahedra and its kin were yel low. 
One tetrahedron was red, with its dual orange. The dodeca
hedron and its co-fu nctionaries were dark bl ue, and the icosa
hedron was l ight bl ue. The faces which represented variations 
on the vertices of the great-circle polyhedra, were colored 
wh ite, black, or gray, depending on how many sides the faces 
of their Archimedean duals have. This arrangement showed 
the symmetry of the fami l ies bri l l iantly, but left the intersec
tions of the fami l ies up to the imagi nation.  

My fi rst attempt to rectify this shortcoming looked l i ke a 
model of a molecule-a rather alarm i ng molecu le, at that 
(Figure 29).  A ring of 6 spheres represented the members of 
each fam i ly. These spheres represented the Platon ic  sol ids, 
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Figure 30 
THE COMPLETE SET OF ARCH IMEDEANS 

This is one way of looking at the family relationships within any of the polyhedral families. 

both truncated P laton ic  sol ids, the truncated great c ircle, and 
the rhombic great-circle figu re, a l l  arranged around the great
circle figure itself. There was a tai l  attached at one Platonic, 
representing the snub figures. I later refined this arrangement 
to one that looked l i ke one of a set of jacks: 6 bal ls, one above, 
one below, up, down, left, and right of the central bal l ,  with 
one hanging off to the side. 

I actual ly made th ree of these sets out of Styrofoam bal ls and 
toothpicks, and attached them to each other in  the appropri
ate manner. If you did it j ust right, you cou ld join the three 
fam i l ies where they i ntersect, indicating the connections made 
by the enharmonic sol ids, with the octahedron touching the 
tetritetrahedron, the cuboctahed ron touch ing  the rhom
bitetritetrahedron, the truncated octahedron touch ing the trun
cated tetritetrahedron, and fi na l ly  the icosahedron touch ing 
the snub tetrahedron. 

I did it, but it was a mess. It was very hard to keep the con
struction from fal l ing apart. And even when it held together 
(though it accu rately repres�nted what I wanted to show), you 
couldn't really see it. It had

'
a decided Rube Goldberg qual ity. 

This wasn't what I wanted at a l l .  You had the sheer beauty 
of great c ircles on a sphere: Least-action pathways on a least
action surface, dividing themselves evenly and creating sym
metrical fami l ies of polyhedra, which intersected in an i roni-

cal way, typifying the kind of certai nty you can only find 
embedded i n  a metaphor, which, of cou rse, is  the only way 
to speak the truth. This truth represented a vis ib le image of 
the unseen l i m its placed on phys ical space by the creating 
force of the u n iverse. I d idn't th i n k  a p i le  of crumbl ing 
Styrofoam was the right way to show this.  I was stuck at this 
point for some days. Then I had an idea; I decided to d isplay 
this i rony i ron ical ly. 

The i rony was this:  The u nseen, u ncreated domain,  which 
bounds and is  creati ng our u n iverse, has l i m ited our abi l ity to 
create regu lar polyhedra and, as stated, proved that the u n i
verse is not shaped l i ke an endless checkerboard. How to 
show this? Put it on a checkerboard. 

Do What? 
This real ly cheered me up. In d iscussing these polyhedra you 

have three attributes to contemplate, their faces, the edges 
where two faces meet, and the vertices where the edges and 
faces meet. For example, the tetrahedron has 4 faces, 4 vertices 
and 6 edges; the cube, 6 faces, 8 vertices and 1 2  edges. The rea
son the octahedron is the dual  of the cube is that the octahedron 
has 8 faces where the cube has 8 vertices, 6 vertices where the 
cube has 6 faces, and 1 2  edges, which cross the cube's 1 2  edges 
at right angles. You get the idea. To map the polyhedral fami l ies, 
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Figure 31 
TWO-DIMENSIONAL GRID OF PLATONIC AND 

ARCH IMEDEAN POLYHEDRA 

find the location for each member on a three-dimensional grid, 
where each axis of the grid represents one of the attributes of the 
polyhedron: faces, edges, and vertices. 

S i nce I was working with graph paper on a c l ipboard, I 
started by us ing only two axes at a time. I found it most effec
tive to examine the faces and vertices on the two-d imension
al  graph paper and just ignore the edge-ax is. (There is anoth
er i rony here that took me years to understand, but no short
cuts). What I found at the time was rea l ly someth ing. (See 
Figure 3 1 )  

I put the dots on the graph paper. It looked l i ke a confusing 
mess, but when I connected each fam i ly's dots with colored 
ink, its clarity a lmost jumped off the paper. It looked l i ke a star 
chart with constel lations drawn on it. The conste l lation of 
each fam i ly  looked l ike a primitive cave painting of a bi rd-a 
crane or pel ican-or better yet, a theropod" dinosaur, one 
that looks l i ke the Tyrannosaurus rex. The Platonics were 
located at the tip of each d i nosaur's mouth ; the great-ci rcle 
figures were the heads and the tru ncated P latonics were the l it
tle front c laws. The rhombic great c irc les were the bodies, the 
snubs the tips of the tai l s, and the truncated great-circle figures 
were the feet. 

I had a " l ittle" 8-foot-long, red Oeinonychus di nosaur, ' 2  
with its mouth closed representi ng the tetrahedron fami ly; a 
med ium-sized 1 6-foot, green Ceratosaurus1 3 with its mouth 
open a l ittle as the cube fam i ly, and a huge blue 40-foot-long 
T-Rex' 4 with its mouth open wide, as the representative of the 
dodecahedron fam i ly. This was a lot of fu n .  

One th ing that seemed funny to m e  was that the "truncat
ed Platonic" pai rs--.:the tru ncated cube and truncated octahe
d ron, for example-both mapped to the same place, even 
though they had very different appearances. The same thing 
happened with the tru ncated dodecahedron and truncated 
icosahedron .  Look at the tru ncated cube and tru ncated octa
hedron, or even more strik ing, the tru ncated dodecahedron 
and truncated icosahedron.  They don't look at a l l  a l i ke, but 
each pair happens to have the same number of faces, vertices, 
and edges. Wel l ,  one polyhedron for each d i nosaur claw. 
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Faces 

Figure 32 
THE TETRAHEDRON FAMI LY H I G H LI GHTED 

The connected dots represent the tetrahedron family, 
masquerading as a small Deinonychus dinosaur. 

You could see each fam i ly clearly on the chart, and the 
i ntersections, too : the t ip  of the mouth of the green 
Ceratosaurus touched the head of the red Oeinonychus; the 
head of the Ceratosaurus tou ched the body of the 
Oeinonychus; and the neck of the Ceratosaurus touched the 
foot of the Oeinonychus. At the same time, the mouth of the 
blue T-Rex touched the tip of the tai l  of the poor l ittle 
Oeinonychus. This real l y  worked n icely, and it gave you the 
impression that you weren't looking at a static thing.  Those 
d inosaurs were goi ng to start chewing any m i n ute. You could 
also see how the enharmonic polyhedra were, in fact, in  both 
fam i l ies, fi l l ing  d ifferent roles. , 

The d i nosaur mouths were open different amou nts. That 
made me stop and look. It seemed to mess up the symmetry of 
the fam i l ies. I knew something was fu n ny with the way I was 
thinking about th is, and I had a g l immer of anticipation, l ike 
the change in the way the a i r  feels  before a thunderstorm. Why 
weren 't my supposedly symmetrical families absolutely identi
cal on the chart? 

I had an idea-superimpose the fam i l ies to see if they real
ly were the same shape. They looked the same, but, you never 
know. Here's how it works: The vertices of the dodecahedral 
Arch imedeans were at 30, 60, and 1 20 ;  the cubic 
Archi medean vertices were at  1 2, 24,. and 48; and the tetrahe
dral vertices were at 6, 1 2, and 24. A l l  I had to do was put the 
dots on one grid that had three different scales. If the fam i l ies 
were symmetrical, then the dots wou ld be in the same place. 
The differences in  dodecahedral Arch imedean vertices were 
30 and 60; the d ifferences for the cubes were 1 2  and 24, with 
the tetrahedrons at 6 and 1 2 . That should work. 

The scale for the faces of the Archi medean polyhedra was 
the same idea. The dodecahedral Arch imedean faces fel l  at 
32, 62, and 92 .  The cubes were 1 4, 2 6, and 38;  with the tetra
hedrons at 8, 1 4, and 20. This worked too, with differences of 
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Figure 33 
THE CUBE FAMilY H IG HLIGHTED 

The cube family resembles a mid-sized Ceratosaurus 
when its dots are connected. 

30 for the dodecahedral, 1 2  for the cubic, and 6 for the tetra
hedra l .  The Archi medean sol ids  of each fam i l y  exactly 
mapped onto the Archimedeans of a l l  the other fami l ies. The 
Archimedean polyhedra fam i l ies real ly  were symmetrical .  

One l ittle nagging, h int of a question. The cube, dodecahe
dron, and tetrahedron a l l  mapped onto each other too, when I 
overlaid the fami l ies of Archimedeans, but the octahedron and 
icosahedron each fel l  in a different place. That was why the 
mouths of the d inosaurs seemed to be open wider, as they got 
bigger. The bigger the d inosaur, the wider the mouth-maybe 
that had someth ing to do with Darwin, but I doubted it. It was a 
puzzle, but by this time I was working so fast that I didn't stop. 

This was a situation I was used to by now, i n  the geometry 
work. I had a n ice theory, a beautiful picture to show, and one 
fly in the oi ntment. I found that you don't have to ruthlessly 
hunt down the anomal ies and destroy them. Bel ieve me, if you 
do the work, they' l l  fi nd you .  (What you do have to do is enjoy 
being caught by the anomal ies, u n l i ke the "Bread Scholars" 
that Sch i l ler denou nces, who try to cover up anomal ies . 1 5) 

Why weren't my symmetrical fam i l ies symmetrical ? Those 
damn d inosaurs had their mouths open different widths. I wi l l  
tell you why, but  we are going to have to go around the long 
way to get there. 

Three Dimensions, If You Got 'Em 
I did feel a l ittle bad to be working with only two d i men

sions of my three-d i mensional grid at one time. So, I got a 
slab of Styrofoam and some smal l  wooden dowel-rods. I 
made a face- and vertex-grid on a piece of paper, cut the 
dowels to the length of the edge-axis on the same scale plus 
an inch, put the paper on the Styrofoam, and poked the dow
els through the paper at the proper place an inch into the 
Styrofoam . The upper ends of the dowels represented the 
location in  3-D where the polyhedra should be located. I was 
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Figure 34 
THE DODECAHEDRON FAMilY H IGHLIGHTED 

The dodecahedron family as a huge T-rex. 

so happy with this that I made a piece of cardboard which 
had pictures of each Platon ic and Arch i medean polyhedron 
on it. The cardboard wou ld sit on the Styrofoam, next to 
where the dowels were, so you cou ld see what each dowel 
represented. 

I had hoped that looking at the pattern in th ree d i mensions 
would directly portray some neat secret about the u nseen 
force that shapes the Platon ic  and Archimedean sol ids. Maybe 
it wou ld be a 3-D spiral, or waveform, or some exotic shape 
l i ke a pseudosphere. 

It d idn't. 
It looked to me l ike all the polyhedra fel l  in  one plane, a 

plane t i l ted with respect to the other axes, but just a plane! 
Upon reflection, this shou ldn't h ave been a surprise, if I had 
had more mathematical tra in ing .  The phenomenon was an 
artifact of what has been sad ly named Eu ler's formula .  Each of 
the polyhedra is subject to th is  curious fact : The number of 
faces, plus the number of vertices, m i nus the n umber of edges 
is always 2 .  

Tetrahedron:  4 + 4 - 6 = 2 .  
S n u b  dodecahedro n :  92 + 60 - 1 50 = 2, a n d  s o  o n .  
This would explain w h y  a l l  t h e  sol ids, mapped t h e  way I 

was doing it, ended up i n  a plane. It did make it easier to 
show. I cou ld sti l l  accurately display the real th ree-d imension
al graph on a two-d imensional piece of paper after a l l ,  but it 
lacked the pizzazz of having the more trendy hyperbol ic 
waveforms i n  my graph . 

'The Universe, and All That Surrounds 1t
,16 

In  LaRouche's "Metaphor" paper, which was publ ished when 
he was in  prison, at the height of my activity in  these matters, he 
made it qu ite clear that great circles on a sphere were the way 
to create the Platonic sol ids. My one overrid ing thought whi le 
working on this project was, "Spheres are primary; how does 
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Figure 35 
GOD'S GRAPH PAPER 

Christine Craig 

cuts through the center of the next 
face, cuts a d ifferent edge in half  at 
right angles, cuts through the center 
of a nother face and then jo ins  u p  
with t h e  edge on the opposite s i d e  of 
the dodecahedron. It cont inues on 
until it returns to the origi na l  great
c ircle segment. If you can see it (it is 
real ly h ard), you wi l l  find that it takes 
1 great c i rc le to cover 2 edges of the 
dodecahedron. Si nce there are 30 
edges on a dodecahedron, i t  takes 
1 5  great c i rc les to defi ne a dodeca
hedron. 

F ifteen great c ircles! I can barely 
see 4 great c ircles when I'm looking 
right at them. How can I visual ize 
1 5 ? 

Remember the B read Scholars?  
You have to do i t .  For  safety's sake, 
don't use 1 5  embroidery hoops for 
this. Use a half- inch strip cut the long 
way from a piece of poster board. 
Mark the strips where they wi l l  inter
sect before you cut them out. There is  
a lot of techn ique i nvolved in  getting 
them to work, but that's part of the 
fun, too. 

The 6-, 9-, and 7 5-great-circle spheres, with the fundamental 3-, 4-, and 6-great 
circles of the Platonics superimposed on them. These are made of half-inch strips 
of colored poster board glued into the great circles. White balloons were inflat
ed within to enhance visibility. 

Remember the dodecahedron 
i ns ide the icosidodecasp here? The 
center of each of the dodecahedral 
edges touches a vertex of the icosi
dodecasphere.  There are 30 edges 

this come from a sphere?" A sphere is the highest level of least 
action we can apprehend with our senses alone. 

The regular 6-hoop sphere, the icosidodecasphere, has 1 2  
pentagonal and 20 triangular areas that the great c ircles 
sweep out. To locate a dodecahedron in this arrangement, 
you put each of its 20 vertices in the center of one of the 20 
spherical triangles of the icosidodecasphere. L i kewise, the 
icosahedron's 1 2  vertices would go into the 1 2  spherical pen
tagons of the icosidodecasphere. If you look at a dodecahe
dron alone, you see that it is  l i ke every other polyhedron we 
are deal ing with, except the tetrahedron, in this way: It is 
made up of features that reappear on opposite s ides of the fig
u re. Each face has a paral le l  face that is on the other side of 
the dodecahedron, so a dodecahedron is real ly made up of 6 
pairs of para l le l  faces. L i kewise, the vertices a l l  have another 
vertex exactly opposite to i t  on the other side of the dodeca
hedron.  The edges do too. Look at the 30 edges of the dodec
ahedron.  If we imagine the dodecahedron inside a sphere that 
touches each of its vertices and imagine a segment of a great 
c i rcle connecting each vertex to form a dodecasphere, then 
we are ready for action. 

Take any edge on the spherical dodecahedron, the dodeca
sphere. This is  a segment of a great c ircle. Extend the segment 
in a stra ight l i ne on the sphere. The l i ne (great-circle path) 
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to a dodeca hedron, and 30 vertices 
in an icos idodecahedron, and they 

are, i ndeed, in the same orientat ion.  Because that's true, 
look at where the 1 5  great c i rcles go. They a l l  b isect the 
vertices of the icosi dodecasphere, clean as a whist le .  

Look at an icosahedron ins ide an icosidodecasphere. 
Remember that? 1 2  vertices are inside 1 2  spherical pentagons. 
The center point of the each of the icosahedral edges touches 
each icosidodecasphere at the vertex-3D and 3D, its just l ike 
the dodecahedron.  The 30 edges of an icosidodecahedron 
would make 1 5  great circles, j ust l i ke the dodecahedron did.  
In  fact they are the very same 1 5  great c irc les. 

Now look at this process backwards. You start with a sphere
least action in  the visible domain. Straight l i nes on the sphere, 
great circles, intersect each other to give you even divisions. This 
can be done in only three ways, with 3, 4, and 6 great circles. 
Take the 6-great-circle sphere, the icosidodecasphere, and bisect 
each angle where the 6 great circles meet at each vertex with 
another great circle. These 1 5  great circles have created the ver
tices of both the dodecahedron and the icosahedron. You have 
done it: least action, to spheres, to Platonic solids. 

Now, you cou ld sl ice up a dodecahedron to make the other 
Platonic sol ids without using the other regul ar great-circle fig
ures, but why use 1 8th Century methods, as F D R  said to 
Church i l l ? 1 7  Use the even d ivisions of great c irc les d i rectly. 1 8  

O K ,  who's next? The cube a n d  octahedron i n  t h e  4-hoop 



cuboctasphere are next. This is a l i ttle easier. The cube fits i nto 
the cuboctasphere with its 8 vertices in the centers of the 8 
spherical triangles.  The centers of its 1 2  edges h it the vertices 
of the cuboctasphere, and if you extend its 1 2  edges, you get 
6 great circles. This is the same pattern as before, but with 
fewer components. 

The octahedron is a d ifferent kettle of fish .  It fits into the 
cuboctasphere all right: the 6 vertices in the center of the 6 
spherical squares of the cuboctasphere, with the center points 
of the 1 2  edges at the vertices of the cuboctasphere. But you 
don't have to extend the edges to make complete great circles. 
They already are complete great c ircles, because the octahe
dron, in spherical form, is also the tetritetrasphere, the three
great-circle figure of the tetrahedron fami ly. I n  the icosidodeca
sphere, you had 1 5  additional great c i rcles, each shared by the 
icosahedron and the dodecahedron. In the cuboctasphere, you 
have 6 great circles used by the cube, and another 3 by the 
octahedron, for a total of 9. Nonetheless, the cube and octahe
dron are generated by the 4 great circles of the cuboctasphere 
with exactly the same method that created the dodecahedron 
and icosahedron. 

For the tetritetrasphere, we a l most get back to normal .  If you 
put a tetrahedron in a tetritetrasphere, its 4 vertices go into 
alternati ng spherical triangles, and the centers of its edges map 
to the vertices of the tetritetrasphere. Extend the edges of the 
tetrahedron and you get 6 great c i rc les. The other tetrahedron 
fits into the unused spherical triangles of the tetritetrasphere, 
and its edges l ie in the same 6 great c i rcles as the first tetrahe
dron's do. 

This is the least-action pattern . 6 regularly divided great circles 
generate 1 5  others, which define the dodecahedron and icosa
hedron. Four regu larly divided great circles generate 9 others, 
which define the cube and octahedron; and 3 regularly divided 
great circles generate 6 others, which define both tetrahedra. 
That's the pattern. The irony here is that the 6 other great circles 
that define the cube are the same 6 great circles that define both 
tetrahedra, but they in no way resemble the regularly d ivided 
arrangement of 6 great circles that are the icosidodecasphere. 
The cube/tetrahedral sharing of the same irregular set of 6 great 
circles, is why you can put two tetrahedra in a cube, as in the 
Moon/Hecht model of the nucleus of the atom . 19  

In  the middle of  a l l  these lovely trees, I remembered some
thing about a forest. The reason that I started investigating 
Archimedean solids in the first pl ace was because the rhombic 
dodecahedron fi l led space l ike a cube; and no other shape in 
the u niverse, which had only a single kind of face, did that. It 
was as obvious as the nose on my face, that the rhombic 
dodecahedron isn't an Archimedean solid at a l l .  It doesn't 
have regu lar faces. It is  the dual of an Archi medean .  

What About the Duals? . 
So, I constructed the Archimedean d uals, too, a l l  of them.2o 

(See Figure 28.) 
The way Arch imedean dual polyhed ra relate to the 

Archimedeans is  i nstructive. The sphere that encloses and 
touches each vertex of an Archimedean sol id touches the cen
ter of each face of the dual .  A l l  of the faces of a dual are the 
same shape, although some of them can be fl ipped over in a 
left-handed/right-handed way; and none of their faces is regu-

Tetrakis hexahedron 
(6 circles) 

Disdyakis dodecahedron 
(9 circles) 

Disdyakis triacontahedron 
( 1 5  circles) 

Figure 36 
THE ARCHIMEDEAN D UALS AND 

THE G REAT CI RCLES 
The dual of each and every Archimedean solid is direct
ly mapped by the 7 5, 9, and 6 great circles derived from 
the 6, 4, and 3 evenly divided great circles-except for 
the pesky snubs. 

lar. As we wi l l  see, the Archimedean duals are harder to d is
cuss, because of the irregularity of the faces, but I've come to 
bel ieve that they are, at the very least, as important as, and as 
primary as, the Archimedean solids themselves. 

The last dual solid I made, the d isdyakis triacontahedron, was 
the dual of the truncated icosidodecahedron. It has 1 20 identi
cal l ittle right triangles for faces. As I was putting it together (I 
actually cut out 1 20 triangles and taped them together), I real
ized that the edges of this polyhedron were also great circles. 
That seemed interesting, but this was such a busy construction, 
that I couldn't see exactly what I had made at the time. (This 
real ization also points out the importance of actual ly construct
ing the real polyhedra, rather than just looking at them .)21 

I thought about the great-circ le q uestion for days. I had my 
whole set of 48 polyhedra hanging in my bedroom. There 
were a heck-of-a-Iot of great c i rc les d ivid i ng up the d isdyakis 
triacontahedron i nto 1 20 triangles.  Were there 1 5  great c i rcles 
in the d isdyakis triacontahedron?  Were they the same 1 5  great 
c ircles that define the dodecahedron and the icosahedron? 
Cou ld that be possible? Was the un iverse designed with such 
precision and charm that the process that created the dodeca
hedron and the icosahedron d i rectly mapped to the dual of the 
truncated icosidodecahedron ? It seemed l i ke it shou ld be, but 
was almost too much to hope for. 

I went to sleep one Saturday night thinking that, if the fam il ies 
of polyhedra were indeed symmetrical, and the disdyakis tria
contahedron was real ly mapped this way, then the edges of the 
dual of the truncated cuboctahedron, the disdyakis dodecahe
dron, should be made out of the 9 great circles used to make the 
cube and octahedron. In addition, the edges of the dual of the 
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Figure 37 
TWO-DIMENSIONAL GRID OF 

PLATONIC AND ARCHIMEDEAN POLYHEDRA 
AND THEIR DUALS 

enharmonic truncated tetritetrahedron, the tetrakis hexahedron 
(which looks l ike a truncated octahedron), should map to the 6 
great circles that make the two tetrahedra. When my eyes 
opened on Sunday morning, I was looking right at the tetrakis 
hexahedron. I saw the 6 great circles in  the figure as plain as day. 

This real ly got me moving. 
It turns out that the dual of each and every Archimedean solid 

is directly mapped by the 1 5, 9, and 6 great circles derived from 
the 6, 4, and 3 evenly divided great circles; a l l  of the duals except 
for the pesky snub cube and snub dodecahedron, are right there. 
The snubs are a special case, which wil l  become more apparent, 
the more work we do. The duals of the truncated quasis use al l  
of the faces defined by the great circles. The duals of the others 
combine some of the faces to make up rhombic and differently 
shaped triangular faces. It is worth the trouble of constructing the 
Archimedean duals just to see how this works. 

The realization of the role of the great c ircles in the con
struction of the Archimedean duals made me determ ined to 
i ntegrate the Archimedean duals into my system. How do the 
duals map onto the grid on which I had al ready placed the 
Archimedean sol ids? 

These names mean someth ing about the number of faces. 
The dual of the truncated tetrahedron, the triakis tetrahedron, 

looks l ike a tetrahedron that has each face d ivided into three 
faces. There are three identical triangles in each original face of 
the tetrahedron. Their edges go from the center of its face to the 
vertex, and are pushed out a I ittle at the center of the tetrahedron's 
face. I suppose the "triakis" means 3 and "tetrahedron" means, 
as we know, 4-sided. The first pair of these polyhedra I made 
were out of black poster paper, as their faces were triangles.22 
The other names are also as instructive, but not very catchy. 

What you see when you add the Arch imedean duals to the 
map, is a symmetrical pattern, l i ke a Rorschach ink-blot test 
made up of dots.23 (See Figure 3 7.)  
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As I started to do the additional mapping, I decided to go whole 
hog. You may remember that there are two infin ite series of 
Archimedean solids that we have ignored so far, the prisms and 
anti-prisms. A prism can be constructed by taking any regular 
polygon from an equi lateral triangle up to an equi lateral baz i l l ion
sided figure. Hang squares with edges the same length as those of 
your original polygon on that polygon, so each edge of the square 
touches an edge of the polygon and the two adjacent squares. 
Then put a polygon just l ike your original one on the bottom, and 
you have an Archimedean prism. (See Figure 38.) 

For example, you can start with a regu lar hexagon, hang 
squares from each of its edges, and put another hexagon on 
the bottom .  I t  looks l i ke a hatbox. This is an Archi medean 
sol id too. One sphere wou ld touch each vertex, and one 
sphere would touch the center-points of both hexagons, and 
one sphere would touch the center-points of a l l  squares. This 
is true for a l l  of the Archi medean prisms. As you get i nto the 
h igher nu mbers of sides, the prisms get th inner and th inner, 
eventual ly resembl ing a coin,  or CD. As for the duals, the 
prism duals are a l l  made up of isosceles triangles. The dual of 
the 6-sided prism, the hexagonal d ipyramid, would have 1 2  
triangles-6 isosceles triangles pointing up, l i ke a tee-pee, and 
6 pointing down. See: "dipyramid," two pyramids stuck 
together at thei r  bases. As you add more edges, the triangles 
get longer and longer u nt i l  they tilke on the aspect of a 
stretched-out dowel with sharpened ends, unti l  you final ly 
give up because there are too many sides. 

Anti-prisms are s imi lar to prisms, but are made with tri
angles rather than sq uares, hanging from any regu lar poly
gon-from an equ i l ateral triangle on up. There are as many tri
angles as there are edges on both the top and bottom polygon. 
The triangles are put together alternately, so that they look l i ke 
a ch i ld's d rawi ng of shark's teeth . A 6-sided anti-prism has 1 2  
equ i lateral triangles around the c ircu mference, and hexagons 
on both top and bottom. The dual of an anti-prism is made up 
of a 4-sided figure that looks l i ke an arrowhead. They are 
cal led trapezohedrons. The more sides the anti-prism has, the 
more poi nty the arrowhead. The dual of the 6-sided anti-prism 
has 1 2  faces : 6 arrowheads pointi ng up, meeting at their 
points, and 6 pointing down. 

There is  a pattern here: the faces of the prisms are always two 
more than the number of polygonal edges, the vertices are always 
twice the number, and the edges are three times the number. 

F igure 38 (b) shows the progression of the anti-prisms. The 
pattern here is: The faces of the anti-prisms are always two more 
than twice the number of the polygonal edges, the vertices are 
always twice, and the edges are four times the n umber. 

To chart the duals of the prisms, switch the face and vertex 
nu mbers, just as with every other polyhedron. 

There is someth ing going on that I haven't mentioned yet: 
The 4-prism is the cube and the 3-anti-prism is the octahe
dron. Look at a l l  the work the dual-pa i r  of the cube and octa
hedron do. F i rst, they each are Platonic sol ids and duals of 
each other. Second, the octahedron is also the tetritetrahedron, 
the figure d i rectly created by the even d ivisions of th ree great 
c ircles, and parent of the tetrahedron fami ly; and the cube is 
its dual,  perhaps cal led the rhombic hexahedron in that incar
nation. Third, the cube is the 4-prism, one of that infi n ite 
series; and the octahedron is its dual ,  a d ipyram id-the one 



(a) Prisms 
, Triangular: 5 faces, 6 vertices 

Square: 6 faces, 8 vertices (a cube) 

Pentagonal: 7 faces, 10 vertices 

Hexagonal: 8 faces, 1 2  vertices 

Seven sided: 9 faces, 14 vertices 

Octagonal: 10 faces, 1 6  vertices 

Nine-sided: 1 1  faces, 18 vertices . . . .  

(b) Anti-prisms 
Triangular: 8 faces, 6 vertices (an octahedron!) 

Square: 10 faces, 8 vertices (a cube) 

� Pentagonal: 1 2  faces, 1 0  vertices � Hexagonal: 14 faces, 1 2  vertices 

,/\} Seven sided: 1 6  faces, 14 vertices 

Octagonal: 18 faces, 1 6  vertices 

Nine-sided: 20 faces, 1 8  vertices . . . .  

Figure 38 
PRISMS AND ANTI PRISMS 

The series of prisms and antiprisms goes on infinitely. 

Figure 40 
CHARTING THE PRISMS AND 

THEIR DUALS 
When the faces and vertices are gridded, 
the prisms and their duals go off in two 
different straight lines that seem to start 
at the tetrahedron. At the second prism 
dual-pair-the 4-prism (cube}-the anti
prisms and their duals start, with the 3-
anti-prism (octahedron), which is also 
the dual of the 4-prism. The entire chart 
is contained in three pairs of straight 
lines. The prism and dual-of-prism 
lines-the "3-lines"-meet at the tetra
hedron; the anti-prism and dual-of-anti
prism lines-the 4-lines"-run parallel, 
and very close to the "dual line, " while 
the liS-lines II connect all three snubs 
and their duals, and meet the 13-lines" 
at the dodecahedron and icosahedron 
(the snub tetrahedron). 

Hexagonal prism Hexagonal anti-prism 

Hexagonal dipyramid Hexagonal trapezohedron 

Figure 39 
MORE PRISMS 

Pictured here are a 6-sided prism, anti-prism, 
and their respective duals. 

with equ i l ateral triangular faces. Fourth, the octahe
dron is the th ree-anti-prism, the first of that i nfi n ite 
series; and the cube is its dual ,  a trapezohedron with 
equ i lateral faces. 

Let's go to the grid. (See F igures 3 7-38.)  

The Chart 
There is qu ite a lot goi ng on here, so I ' l l  try to 

break it down. The domi nant th ing you see after you 
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put a l l  the dots on the graph paper, is the wedge that the 
prisms and their duals make. S ince you are mapping dual
pairs, the chart is  completely symmetrica l .  There is an imagi
nary l ine down the center of the pattern where you could put 
a m irror, and see the place where the dual of every mapped 
point on your side wou ld appear in the mi rror. The only 
mapped point that actual ly fal ls  on this l i ne is  that of the tetra
hedron, as it is the dual of itself. You could also call  this l i ne 
the pyramid l i ne, as any pyramid you can construct would fall 
on this l i ne. Pyram ids are all duals of themselves. A pyramid 
with a m i l l ion-sided base would have a m i l l i on-and-one faces, 
and a mi l l ion-and-one vertices, with 2 m i l l ion edges. The 
tetrahedron is the simplest pyramid we have, with a base of 3 
sides, and is the only pyramid that is a regular polyhedron. 
S i nce every pyramid is the dual of itself-and even though the 
tetrahedron is the only pyramid qual ified to be mapped on our 
chart-they a l l  would map right down the center dual l i ne, if  
we bothered. You cou ld fold the chart in  half on the dual l i ne, 
or pyramid l ine, and every other polyhedron would touch its 
dual .  

The prisms and their duals go off in two different straight l ines 
that seem to start at the tetrahedron. At the second prism dual
pair, the 4-prism (cube), the anti-prisms and their duals start with 
the 3-anti-prism (octahedron), which is also the dual of the 4-
prism. They run in parallel l i nes very close to the pyramid l ine. 

This intersection spot, where the cube and octahedron are, 
is the location of the most intersections of functions on this 
chart. Does that have someth ing to do with the ease with 
which we conceptual ize a cube? Cubes are easy to picture: 
Up, down; front, back; left, right. 

The whole chart represents the boundary layer between our 
perceived universe, and the unseen process of creation. In  d is
sect ing this wonder, we fi nd the snubs, and the dodecahedron 
fami ly  as a whole, on the far side of the s ingularity from us
the "dark side of the Moon," if you wi l l .  The cube, in contrast, 
is the nearest and most fam i l iar point in this process. (Can sin
gularities have sides?) 

All of the Archi medean duals which have 3-sided faces 
occupy the same spot on the graph as a dual of an 
Archimedean prism, even though they are not the same shape 
(except the octahedron, which is  the dual of a prism-the 
cube). A l l  of the Archi medean polyhedra which pair with 
those duals fal l  on the same spot as one of the prisms. These 
are the tru ncated quasis and the truncated Platonics. (The 
truncated icosidodecahedron maps to the same location as the 
prism with 60-sided faces; the truncated dodecahedron and 
truncated icosahedron map to the prism with 3D-sided faces; 
the truncated cuboctahedron maps to the prism with 24-sided 
faces; the tru ncated cube and tru ncated octahedron (truncated 
tetritetrahedron) map to the prism with 1 2-sided faces, the 
truncated tetrahedron maps to the prism with 6-sided faces} . 
The duals of the Archimedeans match the duals of the prisms. 

All Archimedean duals which have 4-sided faces fall on the 
same spot on the graph as a dual of an Archimedean anti
prism. The Archi medeans which pair with those duals co-occu
py a spot with the anti-prisms themselves. These are the rhom
bi-quasis and the great-circle figures (the rhombicosidodecahe
dron maps to the anti-prism with 3D-sided faces; the icosido
decahedron maps to the anti-prism with l S-sided faces; the 
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rhombicuboctahedron maps to the anti-prism with 1 2-sided 
faces; the cuboctahedron (rhombitetritetrahedron) maps to the 
anti-prism with 6-sided faces; and the tetritetrahedron (octahe
dron) maps to the most famous prism of a l l ,  the cube} . 

The Archimedean duals, l i ke a l l  duals, owe the shapes of 
their faces to the nature of the vertices of their dual-pa i rs, and 
vice versa. An octahedron has faces made up of equ i lateral tri
angles, whereas the cube has 3 edges meeting at equal angles. 
The duals of the great-circle figures all have 4-sided faces, 
because the great c ircles meet, creating four angles. The rhom
bi, and all truncated Archimedean d uals have 3-sided faces. 

Only the snubs and their duals, which have S-sided faces, 
fal l  on the chart in a place not al ready defined by the prisms or 
anti-prisms. Even they l ie  on thei r  own straight l i ne on the chart 
which intersects the prism l ine at the icosahedron.  This impl ies 
that the snubs make up a category of their own . The whole 
chart is contained in  three pairs of straight l i nes. The prism and 
dual-of-prism l i nes, the "3-l ines," meet at the tetrahedron; the 
anti-prism and dual-of-anti-prism l i nes, the "4- l i nes," run par
a l lel, and very close to the "dual l i ne," and meet the "3-l ines" 
at the cube and octahedron, whi le the "S-l ines" con nect al l  
three snubs and their  duals, and meet the "3-l ines" at the 
dodecahedron and icosahedron (the snub tetrahedron). 

The separation of the "S- l i nes" of the snubs is another 
example of their u n iqueness.24 It is not that they are snubbing 
the other polyhedra, of course, but there should be another 
infi n ite set of polyhedra, which wou ld fal l  u nder the snub 
polyhedra. They wou ld be l i ke the prisms and anti-prisms, 
except with five-sided duals.  They don't exist because they 
are not constructable in the discrete u n iverse. The snub poly
hedra are as close as you can come, because of the l i mit 
imposed by the nature of space. My opi n ion is  that the angel 
in  DUrer's Melancolia is  trying to construct such a set, but is 
frustrated by the l i m its of physical space, and is thus, melan
choly. The dual of what the angel has made i n  the woodcut 
wou ld have 3-sided faces, at any rate, and such a series 
would show up on my chart at the same location as every 
other prism, and not on the S-l ine at a l l .  This just shows how 
impossible the project is.  

Where the Platonic solids fal l  on this chart, is h ighly instructive, 
and can be understood in the context of the next paragraphs. 

Once you map the Archimedeans and their duals, you can 
answer the question I asked about the location of the Platonics 
in  that scheme. Do you remember when we superimposed the 
three fami l ies of Archimedeans? The dodecahedron, cube, and 
tetrahedron all fel l  in the same spot, but the octahedron and 
icosahedron seemed to randomly miss the target. The di nosaur 
mouths were open different amounts. Wel l ,  do the same 
superimposed mapping with the duals of the Archi medeans 
and the Platon ics. The icosahedron, octahedron, and tetrahe
dron a l l  map to the same pl ace, and the dodecahedron and 
cube spl atter somewhere else. 

This is awesome. 
From the perspective we have j ust establ ished, the cube and 

dodecahedron belong to the same set of polyhedra as the 
Archimedean sol ids, whi le the icosahedron and octahedron 
belong with the Arch imedean duals .  If you map the Platonic 
polyhedra that way, the fam i l ies are completely symmetrical, 
and once aga in  the beauty of creation has smashed one of my 



Figure 41 

fam i l ies is evenly d ivis ible by 6. If you d ivide 
each polyhedron'S edge-number by 6 and look at 
the resu lts as a one-di mensional graph, the tetra
hedron fami ly  fal ls on 1 ,  2, 3, 4, 5, and 6. The 
cube fami ly  fal l s  on 2,  4, 6, 8, 1 0, and 1 2; whi le 
the dodecahedron fam i ly fal ls  on 5, 1 0, 1 5, 20, 
25, and 30. The cube/tetrahedron enharmonic 
intersections are at 2 ,  4, and 6 ;  with the dodeca
hedron/tetrahedron i ntersection at 5. That's it. The 
fact that both the cube and dodecahedron fami ly  
have members with edges of  1 0  does not  indicate 
an enharmonic i ntersection; they j ust have the 
same number of edges. 

The uti l ization of the edge-axis in this way is 
why, when I fi rst started mapping the 
Archimedean fam i l ies, i t  was most convenient to 
use the faces and vertices for a two-d imensional 
view. The polyhedra seemed to bunch up i n  the 
edge-axis view, and made the chart sloppy. I 
thought that was a problem, and went on to do a l l  
the  work recounted above. If I had real ized that 
only using the edges for mappi ng, I could show 
both the symmetry and i ntersections of the fami
l ies, I wou ld have missed a l l  this fu n .  

. You can d iscourse on this topic, off the top of 
your head with this s imple chart i n  you r  m i nd.25 
Or draw it out:  1 , 2 ,  3, 4, 5 ,  and 6 down the cen
ter of a piece of paper; 2,  4, 6, 8,  1 0, 1 2  on the 
right side; and 5, 1 0, 1 5, 20, 25, 30 on the left. 
Make sure that the numbers are l ined u p, 2 next 
to 2,  4 next to 4, and so on; c i rcle a l l  2 's, 4's, 5's, 
and 6's, and you're done. See Figure 40. 

Once the idea is i n  your head, this is  the only 
mnemon ic device you wil l  need. 

Melancol ia, by Albrecht Durer. Notice the large polyhedron behind 
the figures. So, What Do We Have? 

pet theories i nto the mud. 
When the icosahedron and octahedron enharmon ically act 

as Archimedean sol ids themselves, as snub tetrahedra and the 
tetritetrahedron, then they map as Archimedeans and the 
dodecahedron and cube map as Archimedean duals.  The 
tetrahedron, as the point of the wedge on our graph, and dual 
of itself, part ic ipates in  both sets. 

The Platon ic solids a l l  occupy the 3-l ines. The icosahedron 
and dodecahedron occupy the 5-l i nes as well,  because the 
dodecahedron is  a 5-sided-face dual of the snub tetritetrahedron 
(icosahedron). The cube and octahedron occupy the 4-l ine as 
well, because the cube is a 4-sided dual of the tetritetrahedron 
(octahedron). Most ironical ly, a l l  the l ines intersect at the tetra
hedron, even though it is neither a prism nor the dual of a prism. 

The Chart in the Back of the Book 
This is  a lot to keep in your head. When I was reviving my 

activity with the Archimedean fami l ies, a way of keeping the fam
i lies and their relationships straight in my mjnd came to me. Don't 
tell anyone this trick, unti l  they have done a l l  the above work. 

The number of edges of each member of the Archi medean 

In summary, we have created two sets of tools, 
useful in the ph i losoph ical examination of geom

etry, and, I might add, just as useful in the geometrical exami
nation of phi losophy. 

The first set is the col lection of great-c i rc le figures: 3, 4, 
and 6 even d ivis ions of great c i rc les by other great c i rc les, 
from which we create the 6,  9,  and 1 5  other great-ci rc le 
arrangements which g ive you the Arc h i medean d ua ls, and 
the Arch imedean polyhedra arranged i n  the three symmetri
cal fam i l ies. The great c i rcles are useful in the p lann ing and 
construction of our polyhedra .  All of these col lections of 
great c i rc les together, I 've come to ca l l  "God's graph paper." 
(F igure 35) .  

The other set of  tools is  the mapping of  the locations of the 
polyhedra onto a th ree-d imensional grid. You have the three 
fami l ies of Platon ic  and Arch imedean sol ids, which look l i ke 
three conste l lations, and show the symmetry and i ntersections 
of the fam i l ies. Add i ng the duals of the Archi medean sol ids 
shows how the dual-pairs are m irror i mages of each other, 
whi le adding the prisms, anti-prisms, and their duals provides 
a framework for the other polyhedra, and highl ights some of 
the processes that create the shapes. The various stages of this 
mapping are useful i n  seeing what has been constructed. 
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Figure 42 
CHARTING THE FAMILI ES OF POLYH EDRA 

This is the chart at the back of the book, showing how 
the families of polyhedra intersect. The number of 
edges of each member of the Archimedean families is 
evenly divided by 6. If you divide each polyhedron's 
edge-number by 6 and plot the results in one dimen
sion, this is the result. 

• 
\\ 

Figure 43 
THE SHAPE OF SPACE I I  

The beginning o f  everything! 
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Gridding or mapping the positions of the polyhedra is a tool to 
examine the l imits embedded i n  visible space. Don't look at the 
graph as a thing. It is picture of a small part of the ongoing 
process of creating the universe. Your  examination of the chart is 
part of that process of creation. It would be nice to bui ld a chart 
big enough to put models of the polyhedra where they appear on 
the grid. Even if we do that, even if we have a few city blocks to 
landscape, and the chart is big enough to wal k  around in, it 
won't be a thing. Imagine walking along the 3-l ine by each of the 
prisms, past the dodecahedron and the truncated tetrahedron, 
until you reach the cube. You stop and look across the l ittle 
stream that represents the pyramid l ine, seeing the octahedron 
and the anti-prism row leadi ng off to your right, and reflect on 
how many th ings the octahedron is doing at the same time, even 
while it appears to be just sitting there: Your thoughts at that 
moment are what's happening, not the models themselves. 

These are real ly tools you can use to answer questions such as, 
how is the axis of symmetry different in the dodecahedron vs. the 
rhombic dodecahedron? They both have 1 2  faces, which are dif
ferent shapes. How could there possibly be two dodecahedra 
with differently shaped faces? The Composer didn't sit down and 
cut out cardboard. How do the faces orient to each other in each 
polyhedron? Look at the 3-hoop and 9-hoop spheres. Clearly, the 
center of each face of the rhombic dodecahedron fal ls  at the cen
ter of each edge of the tetritetrasphere, the evenly divided 3-hoop 
construction. Now look at the dodecasphere in the 1 5-hoop 
sphere. The center of each face of the dodecahedron also fal ls  
on an edge of the 3-hoop tetritetrasphere, but not in the center 
of the arc segment. Could it be that the center of the face divides 
the edge at the Golden Mean? I th ink it does. When you divide 
the arcs thusly, you have to choose either a right-handed or left-

handed orientation. This is another indication of 
the dodecahedron family's affin ity to the snub 
figures. Try picturing that without the great-cir-
cle constructions as a guide. 

The relationsh ips presented here are true, 
but what is the relevance? How that works is 
up to you .  The last thing you want is a wel l 
stocked tool box sitting unused in a closet. 
Make, or borrow an hypothesis and then do 
the constructions. O nce you get the bal l  
rol l i ng, it becomes a self-feed ing process. 

As a final inspiration, some wisdom from Act 
I, Scene 5 of Mozart's opera Don Giovanni. Don 
G iovanni  (Don J uan) fool ishly lets h imself get 
with in arm's reach of a former, abandoned lover 
who is looking for him to make him marry her. 
He wants to have his servant, Leporel lo, save 
him by distracting her by recou nting his lengthy 
l ist of G iovanni 's amorous adventures: 

He says ( loosely), "Tel l  her everyth ing." 
Leporel lo, m iss ing the point, either on pur

pose, or not, asks, " Everything?" 
"Yes, yes, tel l  her everythi ng." 
"And make it snappy," she i nterjects. 
"Wel l ,  ma'am, in this  world, truly," says the 

embarrassed Leporel lo, "a square is not round." 
See, everybody used to know that geometry 

was the begi n n i ng of "everything."26 
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of the universe, which we are investigating here, determines where those 6 
faces fall, and how they are shaped, and why they are unique. 6 doesn't just 
mean 6, at all. Likewise, the three families of Archimedean polyhedra are not 
just three, as in '1hree." The past is not the future, and certainly bears no top
ographical resemblance to the present. Past, present, future, your whole exis
tence is shaped by the idea of three, but it is not just "a three:' 

1 1 .  Theropods (meaning "beast-footed") were a sub-order of Saurischian 
dinosaurs. They were fast-moving, bipedal carnivores (meat-eaters) with 
grasping hands and clawed digits. They looked like the kind of turkeys that 
could have you for Thanksgiving. 

12. Oeinonychus antirrhopus, "Terrible Claw upturned" was supposedly a lightly 
built, fast-moving, agile, bipedal (walked on two legs), bird-like dinosaur, which 
could grow up to 1 0  feet long and lived from 1 1 0  to 1 00 million years ago. 

13. Ceratosaurus, the "Horn Lizard" is said to have been a powerful predator 
that walked on two strong legs, had a strong, "s"-shaped neck, and had a 
short horn on its snout. The Ceratosaurus lived from 1 56 to 1 45 million 
years ago and could be 1 5-20 feet long. 

14. Tyrannosaurus rex, the ''Tyrant lizard king," was a huge meat-eating 
dinosaur that lived during the late Cretaceous period, about 85 million to 
65 million years ago. Until recently, Tyrannosaurus rex was the biggest 
known carnivorous dinosaur, at 40 feet long. Current teaching has it that 
the Giganotosaurus and Carcharodontosaurus are slightly bigger. 

1 5. Friedrich Schiller, "What Is, and to What End Do We Study Universal 
History? 1789 Inaugural Address at Jena," translated by Caroline Stephan 
and Robert Trout, Friedrich Schiller, Poet of Freedom, Vol. II, (Washington, 
D.C.: Schiller Institute, 1 988), pp.254-255. 

The course of studies which the scholar who feeds on bread alone 
sets himself, is very different from that of the philosophical mind. The 
former, who for all his diligence, is interested merely in fulfilling the con
ditions under which he can perform a vocation and enjoy its advan
tages, who activates the powers of his mind only thereby to improve 
his material conditions and to satisfy a narrow-minded thirst for fame, 
such a person has no concern upon entering his academic career, 
more important than distinguishing most carefully those sciences 
which he calls "studies for bread;' from all the rest, which delight the 
mind for their own sake. Such a scholar believes, that all the time he 
devoted to these latter, he would have to divert from his future voca
tion, and this thievery he could never forgive himself. 

16 .  Peter Cook (1 937-1 995), "Sitting on the Bench," Beyond the Fringe, (New 
York: Samuel French, Inc. 1 963). 

Strange, but not odd, that a Cambridge-educated comedian would use 
this as a joke title for a book in a comedy review. 

" . . .  1 am very interested in the Universe and all that surrounds it. In fact, 
I'm studying Nesbitt's book, The Universe and All That Surrounds It. He 
tackles the subject boldly, goes from the beginning of time right through to 
the present day, which according to Nesbitt is Oct. 31 , 1 940. And he says 
the Earth is spinning into the Sun, and we will all be burnt to death. But he 
ends the book on a note of hope, he says, 'I hope this will not happen: " 

17. Elliott Roosevelt, As He Saw It, The Story of the World Conferences of 
FOR, (New York: Duell Sloan and Pearce, 1 946), p. 36. 

1 8. This is what laRouche says to do in the "Metaphor" paper, but this is not how 
he says to do it. He says, "From the 6-hooped figure containing dodecahedron 
and icosahedron, the cube, octahedron, and tetrahedron may be readily 
derived:' And it can. However, you may see how the Platonic and other poly
hedra may be formed from the three sets of evenly divided great circles. 

1 9. See Laurence Hecht and Charles B. Stevens, "New Explorations with the 
Moon Model," 21st Century, Fall 2004. 

20. Magnus J. Wenninger, Dual Models, (New York: Cambridge University 
Press, 1 983), pp.I -6. Wenninger gives two methods to determine what the 
dual of any polyhedron is. Going through this with a group of people would 
make an interesting class. 

21 . Robert Williams, The Geometrical Foundation of Natural Structure, 
(Mineola, N.Y.: Dover Publications, Inc. 1 972), pp.63-97. This section of Mr. 
Williams's book was significantly valuable to me when I first started con
structing polyhedra. In particular, the face-angles of the dual polyhedra 
made this portion of the project possible, before I had read Wenninger's 
Dual Models book referenced in footnote 1 9. 

22. Don't make a polyhedron all black, unless you are going to hang it in a 
nightclub. I was trying to highlight the fact that the Archimedean duals are 
made up of only 3-, 4-, or 5-sided faces by making them black, gray, or 
white, depending on how many sides the faces of the polyhedron had. 
However, you can't see what the black ones look like in a photograph. They 
do look mighty slick in person, though. 

23. When I first saw the pattern, I thought it looked like a sampling of an ampli
tude-modulated envelope of increasing amplitude, running for three-and-a
half cycles of the modulating frequency. I later imagined that each family of 
Archimedean solids and their duals could be connected by a pair of sine 
waves 1 80 degrees out of phase with each other, either expanding from, 
or contracting on, the Platonics, for three or four cycles. I am far from com
plete in connecting each family's dots with curves, or sine waves, rather 
than dinosaur skeletons. It is more of an artistic proposition, than a scien
tific one. That could be because I haven't seen the pattern correctly. 
Perhaps a bright young person with a fancy computer program, or even a 
bright old person with a slide rule, could tidy this up. 

24. My friend Gerry Therrien has spoken of how Kepler wrote about the attrib
utes and genesis of the snub polyhedra. I hope he writes up his observa
tions sometime. For now, look at the snub figures and then at any anti
prism, and ponder the similarities. 

25. Plato, Meno. 
This is funny: Plato has Meno express amazement that Socrates can't even tell 

him what virtue is, as Meno has spoken "at great length, and in front of many 
people on the topic:' Later, when Socrates shows the slave why doubling the 
sides of a square won't double the area, Socrates says that, just a moment be
fore the slave would have spoken at great length, and in front of many people on 
doubling the side of a square. Yes, Socrates did irritate a few people. 

26. DON GIOVANNI: Si, si, dille pur tutto. 
(Parte non visto da Donn' Elvira.) DONNA ELVIRA: Ebben, fa presto. 

LEPORELLO: (Balbettando): Madama . . .  veramente . . .  in questo mondo 
conciossiacosaquandofosseche . . .  il quadro non e tondo . . . .  
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